BAT: A New Biclustering Analysis Toolbox

  • Cristian Andrés Gallo
  • Julieta Sol Dussaut
  • Jessica Andrea Carballido
  • Ignacio Ponzoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6268)

Abstract

In this paper, a new biclustering analysis toolbox called BAT, which is based on the BiHEA (Biclustering via a Hybrid Evolutionary Algorithm), is presented. The BiHEA is a memetic approach that integrates a Multi-Objective Evolutionary Algorithm (MOEA) with a local search technique in order to perform microarray biclustering. This method simultaneously considers several goals for optimization, giving as a result a set of biclusters that present a satisfactory trade-off between all of them. The novel software introduced in this article provides the possibility of running the BiHEA along with several pre-processing facilities for the input data and different visualization and statistical tools for the analysis of the biclusters.

Keywords

microarray analysis biclustering multi-objective evolutionary computing software toolbox 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: A survey. IEEE-ACM Trans. Comput. Biol. Bioinform. 1, 24–45 (2004)CrossRefGoogle Scholar
  2. 2.
    Madeira, S., Oliveira, A.: A polynomial time biclustering algorithm for finding approximate expression patterns in gene expression time series. Algorithm Mol. Biol. 4(1), 8 (2009)CrossRefGoogle Scholar
  3. 3.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 93–103. AAAI Press, Menlo Park (2000)Google Scholar
  4. 4.
    DiMaggio, P., McAllister, S., Floudas, C., Feng, X.J., Rabinowitz, J., Rabitz, H.: Biclustering via optimal re-ordering of data matrices in systems biology: rigorous methods and comparative studies. BMC Bioinformatics 9(1), 458 (2008)CrossRefGoogle Scholar
  5. 5.
    Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recogn. 39(12), 2464–2477 (2006)MATHCrossRefGoogle Scholar
  6. 6.
    Bleuler, S., Prelić, A., Zitzler, E.: An EA framework for biclustering of gene expression data. In: Congress on Evolutionary Computation, pp. 166–173 (2004)Google Scholar
  7. 7.
    Gallo, C.A., Carballido, J.A., Ponzoni, I.: Bihea: A hybrid evolutionary approach for microarray biclustering. In: Guimarães, K.S., Panchenko, A., Przytycka, T.M. (eds.) Advances in Bioinformatics and Computational Biology. LNCS, vol. 5676, pp. 36–47. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K.: A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19(16), 2088–2096 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Cristian Andrés Gallo
    • 1
  • Julieta Sol Dussaut
    • 1
  • Jessica Andrea Carballido
    • 1
  • Ignacio Ponzoni
    • 1
    • 2
  1. 1.Laboratorio de Investigación y Desarrollo en Computación Científica (LIDeCC), Departamento de Ciencias e Ingeniería de la ComputaciónUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Planta Piloto de Ingeniería Química (PLAPIQUI) - UNS - CONICET Complejo CRIBABB, Co. La Carrindanga km.7, CC 717Bahía BlancaArgentina

Personalised recommendations