The Living Cell as a Multi-agent Organisation: A Compositional Organisation Model of Intracellular Dynamics

  • C. M. Jonker
  • J. L. Snoep
  • J. Treur
  • H. V. Westerhoff
  • W. C. A. Wijngaards
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6220)


Within the areas of Computational Organisation Theory and Artificial Intelligence, techniques have been developed to simulate and analyse dynamics within organisations in society. Usually these modelling techniques are applied to factories and to the internal organisation of their process flows, thus obtaining models of complex organisations at various levels of aggregation. The dynamics in living cells are often interpreted in terms of well-organised processes, a bacterium being considered a (micro)factory. This suggests that organisation modelling techniques may also benefit their analysis. Using the example of Escherichia coli it is shown how indeed agent-based organisational modelling techniques can be used to simulate and analyse E.coli’s intracellular dynamics. Exploiting the abstraction levels entailed by this perspective, a concise model is obtained that is readily simulated and analysed at the various levels of aggregation, yet shows the cell’s essential dynamic patterns.


Organisational modeling intracellular dynamics modular control analysis regulation and control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M.: The Imperative Future: Principles of Executable Temporal Logic. Research Studies Press Ltd. and John Wiley & Sons (1996)Google Scholar
  2. Ben-Jacob, E., Cohen, I., Czirók, A., Vicsek, T., Gutnick, D.L.: Chemomodulation of Cellular Movement and Collective Formation of Vortices by Swarming Bacteria. Physica A 238, 181–197 (1997)CrossRefGoogle Scholar
  3. Booch, G.: Object oriented design with applications. Benjamins Cummins Publishing Company, Redwood City (1991)Google Scholar
  4. Bosse, T., Jonker, C.M., van der Meij, L., Treur, J.: A Language and Environment for Analysis of Dynamics by Simulation. International Journal of Artificial Intelligence Tools 16, 435–464 (2007)CrossRefGoogle Scholar
  5. Brazier, F.M.T., Jonker, C.M., Treur, J.: Principles of Component-Based Design of Intelligent Agents. Data and Knowledge Engineering 41, 1–28 (2002)zbMATHCrossRefGoogle Scholar
  6. Brown, G.C., Hafner, R.P., Brand, M.D.: A ’top-down’ approach to the determination of control coefficients in metabolic control theory. Eur. J. Biochem. 188, 321–325 (1990)CrossRefGoogle Scholar
  7. Covert, M.W., Schilling, C.H., Famili, I., Edwards, J.S., Goryanin, I.I., Selkov, E., Palsson, B.O.: Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26(3), 179–186 (2001)CrossRefGoogle Scholar
  8. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed Requirements Acquisition. Science in Computer Programming 20, 3–50 (1993)zbMATHCrossRefGoogle Scholar
  9. Dubois, E., Du Bois, P., Zeippen, J.M.: A Formal Requirements Engineering Method for Real-Time, Concurrent, and Distributed Systems. In: Proceedings of the Real-Time Systems Conference, RTS’95 (1995)Google Scholar
  10. Endy, D., Brent, R.: Modelling cellular behavior. Nature 409, 391–395 (2001)CrossRefGoogle Scholar
  11. Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., Treur, J.: Organization Models and Behavioural Requirements Specification for Multi-Agent Systems. In: Demazeau, Y., Garijo, F. (eds.) Multi-Agent System Organisations, Proceedings of the 10th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW’01 (2001)Google Scholar
  12. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-agent systems. In: Third International Conference on Multi-Agent Systems (ICMAS ’98) Proceedings. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  13. Fisher, M.: A survey of Concurrent MetateM — the language and its applications. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. Lecture Notes in AI, vol. 827, pp. 480–505. Springer, Heidelberg (1994)Google Scholar
  14. Fisher, M.: Temporal Development Methods for Agent-Based Systems. Journal of Autonomous Agents and Multi-Agent Systems 10, 41–66 (2005)CrossRefGoogle Scholar
  15. Galton, A.: Temporal Logic. Stanford Encyclopedia of Philosophy (2003),
  16. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs (1971)zbMATHGoogle Scholar
  17. Glass, L., Kauffman, S.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)CrossRefGoogle Scholar
  18. Heinrich, R., Rapoport, S.M., Rapoport, T.A.: Metabolic Regulaiton and Mathematical Models. Progr. Biophys. Mol. Biol. 32, 1–82 (1977)CrossRefMathSciNetGoogle Scholar
  19. Hofmeyr, J.H.S.: Metabolic Control Analysis in a nutshell. BioComplexity (2002) (in the press)Google Scholar
  20. Hofmeyr, J.H.S., Westerhoff, H.V.: Building the cellular puzzle: Control in Multi-level reaction networks. J. Theor. Biol. 208, 261–285 (2001)CrossRefGoogle Scholar
  21. Jamshidi, N., Palsson, B.O.: Systems biology of the human red blood cell. Blood Cells, Molecules and Diseases 36, 239–247 (2006)CrossRefGoogle Scholar
  22. Jonker, C.M., Letia, I.A., Treur, J.: Diagnosis of the Dynamics within an Organisation by Trace Checking of Behavioural Requirements. In: Wooldridge, M., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 17–32. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. Jonker, C.M., Treur, J., Wijngaards, W.C.A.: Specification, Analysis and Simulation of the Dynamics within an Organisation. Journal of Applied Intelligence 27, 131–152 (2001)CrossRefGoogle Scholar
  24. Jonker, C.M., Snoep, J.L., Treur, J., Westerhoff, H.V., Wijngaards, W.C.A.: Putting Intentions into Cell Biochemistry: An Artificial Intelligence Perspective. Journal of Theoretical Biology 214, 105–134 (2002)CrossRefGoogle Scholar
  25. Jonker, C.M., Snoep, J.L., Treur, J., Westerhoff, H.V., Wijngaards, W.C.A.: BDI-Modelling of Complex Intracellular Dynamics. Journal of Theoretical Biology 251, 1–23 (2008)CrossRefGoogle Scholar
  26. Jonker, C.M., Treur, J.: Compositional Verification of Multi-Agent Systems: a Formal Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative Information Systems 11, 51–92 (2002)CrossRefMathSciNetGoogle Scholar
  27. Kahn, D., Westerhoff, H.V.: Control Theory of Regulatory Cascades. J. Theor. Biol. 153, 255–285 (1991)CrossRefGoogle Scholar
  28. Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B.: Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274(42), 30169–30181 (1999)CrossRefGoogle Scholar
  29. Knuth, D.E.: The Art of Computer Programming. Addison-Wesley, Reading (1981)zbMATHGoogle Scholar
  30. Lomi, A., Larsen, E.R.: Dynamics of Organizations: Computational Modeling and Organization Theories. AAAI Press, Menlo Park (2001)Google Scholar
  31. Mintzberg, H.: The Structuring of Organisations. Prentice Hall, Englewood Cliffs (1979)Google Scholar
  32. Moss, S., Gaylard, H., Wallis, S., Edmonds, B.: SDML: A Multi-Agent Language for Organizational Modelling. Computational and Mathematical Organization Theory 4(1), 43–70 (1998)CrossRefGoogle Scholar
  33. Pajares, J., Lopez, A., Hernandez, C.: Industry as an Organisation of Agents: Innovation and R&D Management. Journal of Artificial Societies and Social Simulation 6(2) (2003),
  34. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar
  35. Prietula, M., Gasser, L., Carley, K.: Simulating Organizations. MIT Press, Cambridge (1997)Google Scholar
  36. Rizzi, M., Baltes, M., Theobald, U., Reuss, M.: In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol. Bioeng. 55, 592–608 (1997)CrossRefGoogle Scholar
  37. Rohwer, J.M., Schuster, S., Westerhoff, H.V.: How to recognize monofunctional units in a metabolic system. J. theor. Biol. 179, 213–228 (1996)CrossRefGoogle Scholar
  38. Rohwer, J.M., Meadow, N.D., Roseman, S., Westerhoff, H.V., Postma, P.W.: Understanding glucose transport by the bacterial phosphoenolpyruvate:glycose phosphotransferase system on the basis of kinetic measurements in vitro. J. Biol. Chem. 275(45), 34909–34921 (2000)CrossRefGoogle Scholar
  39. Rotterdam, B.J., van Crielaard, W., van Stokkum, I.H., Hellingwerf, K.J., Westerhoff, H.V.: Simplicity in complexity: the photosynthetic reaction center performs as a simple 0.2 V battery. FEBS Lett. 510(1-2), 105–107 (2002)CrossRefGoogle Scholar
  40. Snoep, J.L.: The Silicon Cell initiative: working towards a detailed kinetic description at the cellular level. Curr. Opin. Biotechnol. 16, 336–343 (2005)CrossRefGoogle Scholar
  41. Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  42. Takahashi, K., Ishikawa, N., Sadamoto, Y., Sasamoto, H., Ohta, S., Shiozawa, A., Miyoshi, F., Naito, Y., Nakayama, Y., Tomita, M.: E-Cell 2: Multi-platform E-Cell simulation system. Bioinformatics 19, 1727–1729 (2003)CrossRefGoogle Scholar
  43. Tanenbaum, A.S.: Structured Computer Organisation. Prentice-Hall, London (1976)Google Scholar
  44. Teusink, B., Passarge, J., Reijenga, C.A., Esgalhado, E., van der Weijden, C.C., Schepper, M., Walsh, M.C., Bakker, B.M., van Dam, K., Westerhoff, H.V., Snoep, J.L.: Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267(17), 5313–5329 (2000)CrossRefGoogle Scholar
  45. Wang, J., Gilles, E.D., Lengeler, J.W., Jahreis, K.: Modeling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose and non-PTS-dependent glycerol transport systems in Escherichia Coli K-12 and its experimental verification. J. Biotechnol. 92(2), 133–158 (2001)CrossRefGoogle Scholar
  46. Weiss, G. (ed.): Multiagent Systems. MIT Press, Cambridge (1999)Google Scholar
  47. Westerhoff, H.V.: The silicon cell, not dead but live! Metab. Eng. 3(3), 207–210 (2001)CrossRefGoogle Scholar
  48. Wijker, J.E., Jensen, P.R., Vaz Gomes, A., De Waal, A., Van Workum, M., Van Heeswijk, W.C., Molenaar, D., Wielinga, P., Diderich, J., Bakker, B.M., Teusink, B., Hemker, M., Rohwer, J., Van der Gugten, A.A., Kholodenko, B.N., Westerhoff, H.V.: Energy, control and DNA structure in the living cell. Biophys. Chem. 55, 153–165 (1995)CrossRefGoogle Scholar
  49. Wooldridge, M., Jennings, N.R. (eds.): ECAI 1994 and ATAL 1994. LNCS, vol. 890. Springer, Berlin (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • C. M. Jonker
    • 1
  • J. L. Snoep
    • 2
    • 4
  • J. Treur
    • 1
  • H. V. Westerhoff
    • 3
    • 4
  • W. C. A. Wijngaards
    • 1
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands, EU
  2. 2.Department of BiochemistryUniversity of StellenboschStellenboschSouth Africa
  3. 3.Stellenbosch Institute for Advanced StudySouth Africa
  4. 4.Department of Molecular Cell PhysiologyBioCentrum AmsterdamHV AmsterdamThe Netherlands, EU

Personalised recommendations