Mixed Bases for Efficient Inversion in \({{\mathbb F}{((2^2)^2)}{2}}\) and Conversion Matrices of SubBytes of AES

  • Yasuyuki Nogami
  • Kenta Nekado
  • Tetsumi Toyota
  • Naoto Hongo
  • Yoshitaka Morikawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6225)

Abstract

A lot of improvements and optimizations for the hardware implementation of SubBytes of Rijndael, in detail inversion in \({\mathbb F}_{2^8}\) have been reported. Instead of the Rijndael original \({\mathbb F}_{2^8}\), it is known that its isomorphic tower field \({{\mathbb F}{((2^2)^2)}{2}}\) has a more efficient inversion. For the towerings, several kinds of bases such as polynomial and normal bases can be used in mixture. Different from the meaning of this mixture of bases, this paper proposes another mixture that contributes to the reduction of the critical path delay of SubBytes. To the \({{\mathbb F}{(2^2)}{2}}\)–inversion architecture, for example, the proposed mixture inputs and outputs elements represented with normal and polynomial bases, respectively.

References

  1. 1.
    Bailey, D., Paar, C.: Optimal Extension Fields for Fast Arithmetic in Public–Key Algorithms. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 472–485. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Canright, D.: Naval Postgraduate School Technical Report: NPS–MA–05–001 (2005), http://web.nps.navy.mil/~dcanrig/pub/NPS-MA-05-001.pdf
  4. 4.
    Canright, D., Batina, L.: A Very Compact ”Perfectly Masked” S–Box for AES. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 446–459. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Itoh, T., Tsujii, S.: A Fast Algorithm for Computing Multiplicative Inverse in GF(2m) using Normal Basis. Inf. Comput. 78, 171–177 (1988)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Mentens, N.: Secure and Efficient Coprocessor Design for Cryptographic Applications on FPGAs, Doctor thesis, Katholieke Universiteit Leuven (2007)Google Scholar
  7. 7.
    Morioka, S., Satoh, A.: An optimized S–box circuit arthitecture for low power AES design. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES), FIPS publication 197 (2001), http://csrc.nist.gov/encryption/aes/index.html
  9. 9.
    Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware architecture with S-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yasuyuki Nogami
    • 1
  • Kenta Nekado
    • 1
  • Tetsumi Toyota
    • 1
  • Naoto Hongo
    • 1
  • Yoshitaka Morikawa
    • 1
  1. 1.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan

Personalised recommendations