Advertisement

Quark: A Lightweight Hash

  • Jean-Philippe Aumasson
  • Luca Henzen
  • Willi Meier
  • María Naya-Plasencia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6225)

Abstract

The need for lightweight cryptographic hash functions has been repeatedly expressed by application designers, notably for implementing RFID protocols. However not many designs are available, and the ongoing SHA-3 Competition probably won’t help, as it concerns general-purpose designs and focuses on software performance. In this paper, we thus propose a novel design philosophy for lightweight hash functions, based on a single security level and on the sponge construction, to minimize memory requirements. Inspired by the lightweight ciphers Grain and KATAN, we present the hash function family Quark, composed of the three instances u-Quark, d-Quark, and t-Quark. Hardware benchmarks show that Quark compares well to previous lightweight hashes. For example, our lightest instance u-Quark conjecturally provides at least 64-bit security against all attacks (collisions, multicollisions, distinguishers, etc.), fits in 1379 gate-equivalents, and consumes in average 2.44μW at 100kHz in 0.18μm ASIC. For 112-bit security, we propose t-Quark, which we implemented with 2296 gate-equivalents.

Keywords

Boolean Function Hash Function Block Cipher Stream Cipher Message Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Feldhofer, M., Rechberger, C.: A case against currently used hash functions in RFID protocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 372–381. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Preneel, B.: Status and challenges of lightweight crypto. Talk at the Early Symmetric Crypto (ESC) seminar (January 2010)Google Scholar
  3. 3.
    NIST: Cryptographic hash algorithm competition, http://www.nist.gov/hash-competition
  4. 4.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak sponge function family main document. Submission to NIST, Round 2 (2009), http://keccak.noekeon.org/Keccak-main-2.0.pdf
  5. 5.
    Bernstein, D.J.: CubeHash specification (2.B.1). Submission to NIST, Round 2 (2009), http://cubehash.cr.yp.to/submission2/spec.pdf
  6. 6.
    Bernet, M., Henzen, L., Kaeslin, H., Felber, N., Fichtner, W.: Hardware implementations of the SHA-3 candidates Shabal and CubeHash. In: CT-MWSCAS. IEEE, Los Alamitos (2009)Google Scholar
  7. 7.
    Feldhofer, M., Wolkerstorfer, J.: Strong crypto for RFID tags - a comparison of low-power hardware implementations. In: ISCAS, pp. 1839–1842. IEEE, Los Alamitos (2007)Google Scholar
  8. 8.
    O’Neill, M.: Low-cost SHA-1 hash function architecture for RFID tags. In: Workshop on RFID Security RFIDsec. (2008)Google Scholar
  9. 9.
    Yoshida, H., Watanabe, D., Okeya, K., Kitahara, J., Wu, H., Kucuk, O., Preneel, B.: MAME: A compression function with reduced hardware requirements. In: ECRYPT Hash Workshop (2007)Google Scholar
  10. 10.
    Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash functions and RFID tags: Mind the gap. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Shamir, A.: SQUASH - a new MAC with provable security properties for highly constrained devices such as RFID tags. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 144–157. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiability of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge-based pseudo-random number generators. In: CHES (to appear, 2009)Google Scholar
  15. 15.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions, http://sponge.noekeon.org/SpongeFunctions.pdf
  16. 16.
    Cannière, C.D., Kücük, O., Preneel, B.: Analysis of Grain’s initialization algorithm. In: SASC 2008 (2008)Google Scholar
  17. 17.
    Aumasson, J.P., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA implementations of highly-dimensional cube testers on the stream cipher Grain-128. In: SHARCS (2009)Google Scholar
  18. 18.
    Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Cannière, C.D., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Sarkar, P., Maitra, S.: Construction of nonlinear boolean functions with important cryptographic properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 485–506. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Bernstein, D.J.: CubeHash appendix: complexity of generic attacks. Submission to NIST (2008), http://cubehash.cr.yp.to/submission/generic.pdf
  23. 23.
    Aumasson, J.-P., Brier, E., Meier, W., Naya-Plasencia, M., Peyrin, T.: Inside the hypercube. In: Boyd, C., Nieto, J.M.G. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 202–213. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Dinur, I., Shamir, A.: ube attacks on tweakable black box polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2010)Google Scholar
  25. 25.
    Aumasson, J.P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) Fast Software Encryption. LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-128. In: IEEE International Symposium on Information Theory, ISIT 2006 (2006)Google Scholar
  27. 27.
    Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  28. 28.
    Lee, Y., Jeong, K., Sung, J., Hong, S.: Related-key chosen IV attacks on Grain-v1 and Grain-128. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 321–335. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jean-Philippe Aumasson
    • 1
  • Luca Henzen
    • 2
  • Willi Meier
    • 3
  • María Naya-Plasencia
    • 3
  1. 1.Nagravision SACheseauxSwitzerland
  2. 2.ETH ZurichSwitzerland
  3. 3.FHNWWindischSwitzerland

Personalised recommendations