Advertisement

Finding Reductions Automatically

  • Michael Crouch
  • Neil Immerman
  • J. Eliot B. Moss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6300)

Abstract

We describe our progress building the program ReductionFinder, which uses off-the-shelf SAT solvers together with the Cmodels system to automatically search for reductions between decision problems described in logic.

Keywords

descriptive complexity first-order reduction quantifier-free reduction SAT solver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The Complexity of Satisfiability Problems: Refining Schaefer’s Theorem. J. Comput. Sys. Sci. 75, 245–254 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals of Mathematics and Artificial Intelligence 12, 53–87 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Clark, K.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New YorkGoogle Scholar
  4. 4.
    Cook, S.: The Complexity of Theorem Proving Procedures. In: Proc. Third Annual ACM STOC Symp., pp. 151–158 (1971)Google Scholar
  5. 5.
    Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  6. 6.
    Eén, N., Sörensson, N.: An Extensible SAT-solver [extended version 1.2]. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Feder, T., Vardi, M.: The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study Through Datalog and Group Theory. SAIM J. Comput. 28, 57–104 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Giunchiglia, E., Lierler, Y., Maratea, M.: SAT-Based Answer Set Programming. In: Proc. AAAI, pp. 61–66 (2004)Google Scholar
  9. 9.
    Hartmanis, J., Immerman, N., Mahaney, S.: One-Way Log Tape Reductions. In: IEEE Found. of Comp. Sci. Symp., pp. 65–72 (1978)Google Scholar
  10. 10.
    Immerman, N.: Descriptive Complexity. Springer Graduate Texts in Computer Science, New York (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Immerman, N.: Languages That Capture Complexity Classes. SIAM J. Comput. 16(4), 760–778 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Janhunen, T.: A counter-based approach to translating normal logic programs into sets of clauses. In: Proc. ASP 2003 Workshop, pp. 166–180 (2003)Google Scholar
  13. 13.
    Jones, N.: Reducibility Among Combinatorial Problems in Log n Space. In: Proc. Seventh Annual Princeton Conf. Info. Sci. and Systems, pp. 547–551 (1973)Google Scholar
  14. 14.
    Karp, R.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computations, pp. 85–104. Plenum Press, New York (1972)CrossRefGoogle Scholar
  15. 15.
    Ladner, R.: On the Structure of Polynomial Time Reducibility. J. Assoc. Comput. Mach. 2(1), 155–171 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lifschitz, V., Razborov, A.A.: Why are there so many loop formulas? ACM Trans. Comput. Log. 7(2), 261–268 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malike, S.: Chaff: Engineering an Efficient SAT Solver. In: Design Automation Conference 2001 (2001)Google Scholar
  19. 19.
    Reingold, O.: Undirected ST-connectivity in Log-Space. In: ACM Symp. Theory of Comput., pp. 376–385 (2005)Google Scholar
  20. 20.
    Schaefer, T.: The Complexity of Satisfiability Problems. In: ACM Symp. Theory of Comput., pp. 216–226 (1978)Google Scholar
  21. 21.
    Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E.: Programming with Sets: an Introduction to SETL. Springer, New York (1986)CrossRefzbMATHGoogle Scholar
  22. 22.
    Valiant, L.: Reducibility By Algebraic Projections. L’Enseignement mathématique, T. XXVIII 3-4, 253–268 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Crouch
    • 1
  • Neil Immerman
    • 1
  • J. Eliot B. Moss
    • 1
  1. 1.Computer Science Dept.University of MassachusettsAmherst

Personalised recommendations