Finding Reductions Automatically

  • Michael Crouch
  • Neil Immerman
  • J. Eliot B. Moss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6300)


We describe our progress building the program ReductionFinder, which uses off-the-shelf SAT solvers together with the Cmodels system to automatically search for reductions between decision problems described in logic.


descriptive complexity first-order reduction quantifier-free reduction SAT solver 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The Complexity of Satisfiability Problems: Refining Schaefer’s Theorem. J. Comput. Sys. Sci. 75, 245–254 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals of Mathematics and Artificial Intelligence 12, 53–87 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Clark, K.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New YorkGoogle Scholar
  4. 4.
    Cook, S.: The Complexity of Theorem Proving Procedures. In: Proc. Third Annual ACM STOC Symp., pp. 151–158 (1971)Google Scholar
  5. 5.
    Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  6. 6.
    Eén, N., Sörensson, N.: An Extensible SAT-solver [extended version 1.2]. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Feder, T., Vardi, M.: The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study Through Datalog and Group Theory. SAIM J. Comput. 28, 57–104 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Giunchiglia, E., Lierler, Y., Maratea, M.: SAT-Based Answer Set Programming. In: Proc. AAAI, pp. 61–66 (2004)Google Scholar
  9. 9.
    Hartmanis, J., Immerman, N., Mahaney, S.: One-Way Log Tape Reductions. In: IEEE Found. of Comp. Sci. Symp., pp. 65–72 (1978)Google Scholar
  10. 10.
    Immerman, N.: Descriptive Complexity. Springer Graduate Texts in Computer Science, New York (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Immerman, N.: Languages That Capture Complexity Classes. SIAM J. Comput. 16(4), 760–778 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Janhunen, T.: A counter-based approach to translating normal logic programs into sets of clauses. In: Proc. ASP 2003 Workshop, pp. 166–180 (2003)Google Scholar
  13. 13.
    Jones, N.: Reducibility Among Combinatorial Problems in Log n Space. In: Proc. Seventh Annual Princeton Conf. Info. Sci. and Systems, pp. 547–551 (1973)Google Scholar
  14. 14.
    Karp, R.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computations, pp. 85–104. Plenum Press, New York (1972)CrossRefGoogle Scholar
  15. 15.
    Ladner, R.: On the Structure of Polynomial Time Reducibility. J. Assoc. Comput. Mach. 2(1), 155–171 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lifschitz, V., Razborov, A.A.: Why are there so many loop formulas? ACM Trans. Comput. Log. 7(2), 261–268 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malike, S.: Chaff: Engineering an Efficient SAT Solver. In: Design Automation Conference 2001 (2001)Google Scholar
  19. 19.
    Reingold, O.: Undirected ST-connectivity in Log-Space. In: ACM Symp. Theory of Comput., pp. 376–385 (2005)Google Scholar
  20. 20.
    Schaefer, T.: The Complexity of Satisfiability Problems. In: ACM Symp. Theory of Comput., pp. 216–226 (1978)Google Scholar
  21. 21.
    Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E.: Programming with Sets: an Introduction to SETL. Springer, New York (1986)CrossRefzbMATHGoogle Scholar
  22. 22.
    Valiant, L.: Reducibility By Algebraic Projections. L’Enseignement mathématique, T. XXVIII 3-4, 253–268 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Crouch
    • 1
  • Neil Immerman
    • 1
  • J. Eliot B. Moss
    • 1
  1. 1.Computer Science Dept.University of MassachusettsAmherst

Personalised recommendations