BioMedical Information Retrieval: The BioTracer Approach

  • Heri Ramampiaro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6266)


With the large amount of biomedical information available today, providing a good search tool is vital. Such a tool should not only be able to retrieve the sought information, but also to filter out irrelevant documents, while giving the relevant ones the highest ranking. Focusing on biomedical information, the main goal of this work has been to investigate how to improve the ability for a system to find and rank relevant documents. To achieve this, we apply a series of information retrieval techniques to search in biomedical information and combine them in an optimal manner. These techniques include extending and using well-established information retrieval (IR) similarity models like the Vector Space Model (VSM) and BM25 and their underlying scoring schemes, and allowing users to affect the ranking according to their view of relevance. The techniques have been implemented and tested in a proof-of-concept prototype called BioTracer, extending a Java-based open source search engine library. The results from our experiments using the TREC 2004 Genomic Track collection seem promising. Our investigation have also revealed that involving the user in the search will indeed have positive effects on the ranking of search results, and that the approaches used in BioTracer can be used to meet the user’s information needs.


Biomedical information retrieval evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdou, S., Savoy, J.: Searching in Medline: Query expansion and manual indexing evaluation. Information Processing & Management 44(2), 781–789 (2008)CrossRefGoogle Scholar
  2. 2.
    Amati, G., Rijsbergen, C.J.V.: Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Transactions on Information Systems 20(4), 357–389 (2002)CrossRefGoogle Scholar
  3. 3.
    Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)Google Scholar
  4. 4.
    Chen, L., Liu, H., Friedman, C.: Gene name ambiguity of eukaryotic nomenclatures. Bioinformatics 21(2), 248–256 (2005)CrossRefGoogle Scholar
  5. 5.
    Croft, B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice, 1st edn. Addison-Wesley, Reading (February 2009)Google Scholar
  6. 6.
    Divoli, A., Attwood, T.K.: BioIE: extracting informative sentences from the biomedical literature. Bioinformatics 21, 2138–2139 (2005)CrossRefGoogle Scholar
  7. 7.
    Eaton, A.D.: Hubmed: a web-based biomedical literature search interface. Nucleic Acids Research 34(Web Server issue), W745–W747 (2006)Google Scholar
  8. 8.
    Hatcher, E., Gospodnetic, O.: Lucene in Action. Manning Publications Co., Greenwich (2005)Google Scholar
  9. 9.
    Hersh, W.R., Bhupatiraju, R.T., Ross, L., Roberts, P., Cohen, A.M., Kraemer, D.F.: Enhancing access to the bibliome: the trec 2004 genomics track. Journal of Biomedical Discovery and Collaboration 2006 1(3), 10 (2006)Google Scholar
  10. 10.
    Herskovic, J., Tanaka, L., Hersh, W., Bernstam, E.: A day in the life of PubMed: Analysis of a typical days query log. Journal of the American Medical Informatics Association 14(2), 212–220 (2007)CrossRefGoogle Scholar
  11. 11.
    Jiang, J., Zhai, C.: An empirical study of tokenization strategies for biomedical information retrieval. Information Retrieval 10(4-5), 341–363 (2007)CrossRefGoogle Scholar
  12. 12.
    Käki, M., Aula, A.: Controlling the complexity in comparing search user interfaces via user studies. Information Processing and Management 44(1), 82–91 (2008); Evaluation of Interactive Information Retrieval SystemsCrossRefGoogle Scholar
  13. 13.
    Kelly, D., Harper, D.J., Landau, B.: Questionnaire mode effects in interactive information retrieval experiments. Information Processing and Management 44(1), 122–141 (2008); Evaluation of Interactive Information Retrieval SystemsGoogle Scholar
  14. 14.
    Krauthammer, M., Nenadic, G.: Term identification in the biomedical literature. Journal of Biomedical Informatics 37(6), 512–526 (2004)CrossRefGoogle Scholar
  15. 15.
    Lowe, H.J., Barnett, G.O.: Understanding and using the medical subject headings (MeSH) vocabulary to perform literature searches. JAMA 271(14), 1103–1108 (1994)CrossRefGoogle Scholar
  16. 16.
    Muller, H.-M., Kenny, E.E., Sternberg, P.W.: Textpresso: an ontology-based information retrieval and extraction system for biological literature. PLoS Biol. 2(11), e309 (2004)Google Scholar
  17. 17.
    Netzel, R., Perez-Iratxeta, C., Bork, P., Andrade, M.A.: The way we write. EMBO Reports 4(5), 446–451 (2003)CrossRefGoogle Scholar
  18. 18.
    Robertson, S., Zaragoza, H., Taylor, M.: Simple bm25 extension to multiple weighted fields. In: CIKM 2004: Proceedings of the thirteenth ACM international conference on Information and knowledge management, pp. 42–49. ACM, Washington (2004)Google Scholar
  19. 19.
    Robertson, S.E., Jones, K.S.: Simple proven approaches to text retrieval. Technical Report 356, University of Cambridge (1994)Google Scholar
  20. 20.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  21. 21.
    Trieschnigg, D., Kraaij, W., de Jong, F.: The influence of basic tokenization on biomedical document retrieval. In: Proceedings of the 30th international ACM SIGIR conference on Research and development in information retrieval (SIGIR 2007), p. 803 (2007)Google Scholar
  22. 22.
    Voorhees, E.M.: On test collections for adaptive information retrieval. Inf. Process. Manage. 44(6), 1879–1885 (2008)CrossRefGoogle Scholar
  23. 23.
    Wilkinson, R.: Effective retrieval of structured documents. In: Proceedings of the 17th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1994, pp. 311–317. Springer, New York (1994)Google Scholar
  24. 24.
    Yilmaz, E., Aslam, J.A.: Estimating average precision when judgments are incomplete. Knowledge and Information Systems 16(2), 173–211 (2008)CrossRefGoogle Scholar
  25. 25.
    Zhai, C.: Notes on the lemur TFIDF model. note with lemur 1.9 documentation. Technical report, School of CS, CMU (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Heri Ramampiaro
    • 1
  1. 1.Department of Computer and Information ScienceNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations