In pattern recognition, graphs become alluring more and more as structural pattern representations due to their richer representability than feature vectors. However, there are many challenging problems using graphs for pattern recognition. One is that it is difficult to investigate the relationships of graphs effectively, even of trees. In this paper, we focus on the structure relationship analysis of trees, such as tree and subtree isomorphism, maximum common subtree, minimum common supertree, etc., which is almost suffered from all kinds of tree recognition problems. For investigating the relationships of structures of trees, we propose a structure network to represent the evolutional relationships of structures of trees. Moreover, for a lot of tree isomorphism problems appearing in the application of structure network, we propose a method that encodes the structure of tree as a numerical sequence, and illustrate its efficiency by comparing it with traditional matching method for tree isomorphism problem.


tree isomorphism subtree isomorphism tree indexing structure analysis tree measure 


  1. 1.
    Bille, P.: A survey on tree edit distance and related problems. Theoretical Computer Science 337(1-3), 217–239 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Köbler, J., Schöning, U., Torán, J.: The graph isomorphism problem: its structural complexity. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  3. 3.
    Bunke, H., Irniger, C., Neuhaus, M.: Graph matching - challenges and potential solutions. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 1–10. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Klein, P.N., Sebastian, T.B., Kimia, B.B.: Shape matching using edit-distance: an implementation. In: SODA, pp. 781–790 (2001)Google Scholar
  5. 5.
    Wilson, R.C., Zhu, P.: A study of graph spectra for comparing graphs and trees. Pattern Recognition 41(9), 2833–2841 (2008)zbMATHCrossRefGoogle Scholar
  6. 6.
    Wilson, R., Hancock, E., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Ttansactions on Pattern Analysis and Machine Intelligence 27(7), 1112–1124 (2005)CrossRefGoogle Scholar
  7. 7.
    Bunke, H., Foggia, P., Guidobaldi, C., Vento, M.: Graph clustering using the weighted minimum common supergraph. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 235–246. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Fawcett, T., Mishra, N. (eds.) ICML, pp. 321–328. AAAI Press, Menlo Park (2003)Google Scholar
  9. 9.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 550–571 (2004)CrossRefGoogle Scholar
  10. 10.
    Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph matching. IEEE Transactions on Systems, Man, and Cybernetics, Part B 35(3), 503–514 (2005)CrossRefGoogle Scholar
  11. 11.
    Neuhaus, M., Bunke, H.: Edit distance-based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852–1863 (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    Sakakibara, Y.: Pair hidden markov models on tree structures. In: ISMB (Supplement of Bioinformatics), pp. 232–240 (2003)Google Scholar
  13. 13.
    Torsello, A., Hancock, E.R.: Graph embedding using tree edit-union. Pattern Recognition 40(5), 1393–1405 (2007)zbMATHCrossRefGoogle Scholar
  14. 14.
    Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 383–393. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Bai, X., Hancock, E.R.: Heat kernels, manifolds and graph embedding. In: [20], pp. 198–206Google Scholar
  16. 16.
    Shokoufandeh, A., Dickinson, S.J., Siddiqi, K., Zucker, S.W.: Indexing using a spectral encoding of topological structure. In: CVPR, pp. 2491–2497. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  17. 17.
    Irniger, C., Bunke, H.: Decision tree structures for graph database filtering. In: [20], pp. 66–75Google Scholar
  18. 18.
    Kučera, L.: Combinatorial algorithms. Taylor & Francis, Abington (1990)zbMATHGoogle Scholar
  19. 19.
    Shamir, R., Tsur, D.: Faster subtree isomorphism. J. Algorithms 33(2), 267–280 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.): SSPR&SPR 2004. LNCS, vol. 3138. Springer, Heidelberg (2004)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mingming Zhang
    • 1
  • Shinichiro Omachi
    • 1
  1. 1.Graduate School of EngineeringTohoku University AobaAoba-kuJapan

Personalised recommendations