Speculative Abductive Reasoning for Hierarchical Agent Systems

  • Jiefei Ma
  • Krysia Broda
  • Randy Goebel
  • Hiroshi Hosobe
  • Alessandra Russo
  • Ken Satoh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6245)


Answer sharing is a key element in multi-agent systems as it allows agents to collaborate towards achieving a global goal. However exogenous knowledge of the world can influence each agent’s local computation, and communication channels may introduce delays, creating multiple partial answers at different times. Agent’s answers may, therefore, be incomplete and revisable, giving rise to the concept of speculative reasoning, which provides a framework for managing multiple revisable answers within the context of multi-agent systems. This paper extends existing work on speculative reasoning by introducing a new abductive framework to hierarchical speculative reasoning. This allows speculative reasoning in the presence of both negation and constraints, enables agents to receive conditional answers and to continue their local reasoning using default answers, thus increasing the parallelism of agents collaboration. The paper describes the framework and its operational model, illustrates the main features with an example and states soundness and completeness results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burton, F.W.: Speculative computation, parallelism, and functional programming. IEEE Trans. Computers 34(12), 1190–1193 (1985)Google Scholar
  2. 2.
    Ceberio, M., Hosobe, H., Satoh, K.: Speculative constraint processing with iterative revision for disjunctive answers. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 340–357. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Cooperation and competition in alias: a logic framework for agents that negotiate. Annals of Math. and AI, 65–91 (2003)Google Scholar
  4. 4.
    Gregory, S.: Experiments with speculative parallelism in parlog. In: ILPS 1993: Proceedings of the 1993 International Symposium on Logic Programming, pp. 370–387. MIT Press, Cambridge (1993)Google Scholar
  5. 5.
    Hayashi, H.: Replanning in robotics by dynamic SLDNF. In: Proc. Workshop on Scheduling and Planning meet Real-time Monitoring in a Dynamic and Uncertain World (1999)Google Scholar
  6. 6.
    Hayashi, H., Tokura, S., Hasegawa, T., Ozaki, F.: Dynagent: An Incremental Forward-Chaining HTN Planning Agent in Dynamic Domains. In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 171–187. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Hosobe, H., Satoh, K., Ma, J., Russo, A., Broda, K.: Speculative constraint processing for hierarchical agents. In: Proc. of 7th European Workshop on MAS, EUMAS 2009 (2009)Google Scholar
  8. 8.
    Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The semantics of constraint logic programs. J. Log. Prog., 1–46 (1998)Google Scholar
  9. 9.
    Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. Journal of Logic and Comp. 2(6), 719–770 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lloyd, J.W.: Foundations of logic programming, 2nd extended edn. Springer, New York (1987)zbMATHGoogle Scholar
  11. 11.
    Ma, J., Russo, A., Broda, K., Clark, K.: DARE: a system for distributed abductive reasoning. Autonomous Agents and Multi-Agent Systems 16(3), 271–297 (2008)CrossRefGoogle Scholar
  12. 12.
    Nabeshima, H., Iwanuma, K., Inoue, K.: Effective sat planning by speculative computation. In: Proc. of the 15th Australian Joint Conf. on AI, pp. 726–728. Springer, London (2002)Google Scholar
  13. 13.
    Satoh, K.: Speculative computation and abduction for an autonomous agent. IEICE Transactions 88-D(9), 2031–2038 (2005)CrossRefGoogle Scholar
  14. 14.
    Satoh, K., Inoue, K., Iwanuma, K., Sakama, C.: Speculative computation by abduction under incomplete communication environments. In: ICMAS, pp. 263–270 (2000)Google Scholar
  15. 15.
    Satoh, K., Yamamoto, K.: Speculative computation with multi-agent belief revision. In: AAMAS, pp. 897–904 (2002)Google Scholar
  16. 16.
    Shanahan, M.: Reinventing shakey. In: Logic-based artificial intelligence, pp. 233–253 (2000)Google Scholar
  17. 17.
    Teusink, F.: Three-valued completion for abductive logic programs. In: Proc. of the 4th Int. Conf. on Algebraic and Logic Programming, pp. 171–200. Elsevier Science Inc., New York (1996)Google Scholar
  18. 18.
    Van Nuffelen, B.: Abductive constraint logic programming: implementation and applications, Phd, Department of Computer Science, K.U.Leuven, Belgium (June 2004)Google Scholar
  19. 19.
    Wallace, M.: Negation by constraints: A sound and efficient implementation of negation in deductive databases. In: SLP, pp. 253–263 (1987)Google Scholar
  20. 20.
    Clark, K.: 1Negation as failure. In: Logic and Data Bases, pp. 293–322 (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jiefei Ma
    • 1
  • Krysia Broda
    • 1
  • Randy Goebel
    • 2
  • Hiroshi Hosobe
    • 3
  • Alessandra Russo
    • 1
  • Ken Satoh
    • 3
  1. 1.Department of ComputingImperial College LondonUnited Kingdom
  2. 2.Department of Computer ScienceUniversity of AlbertaCanada
  3. 3.National Institute of InformaticsJapan

Personalised recommendations