Selforganization in Distributed Semantic Repositories

  • Robert Tolksdorf
  • Anne Augustin
  • Sebastian Koske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6152)

Abstract

Principles from nature-inspired selforganization can help to attack the massive scalability challenges in future internet infrastructures. We researched into ant-like mechanisms for clustering semantic information. We outline algorithms to store related information within clusters to facilitate efficient and scalable retrieval. At the core are similarity measures that cannot consider global information such as a completely shared ontology. Mechanisms for syntax-based URI-similarity and the usage of a dynamic partial view on an ontology for path-length based similarity are described and evaluated. We give an outlook on how to consider application specific relations for clustering with a usecase in geo-information systems.

References

  1. 1.
    Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.: Marvin: A platform for large-scale analysis of semantic web data. In: Proceeding of the WebSci’09: Society On-Line (March 2009)Google Scholar
  2. 2.
    Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM 32(4), 444–458 (1989)CrossRefGoogle Scholar
  3. 3.
    TripCom consortium: Triple space communcation homepage, http://www.tripcom.org
  4. 4.
    Menezes, R., Tolksdorf, R.: A new approach to scalable linda-systems based on swarms. In: Proceedings of ACM SAC 2003, pp. 375–379 (2003)Google Scholar
  5. 5.
    Tolksdorf, R., Augustin, A.: Selforganisation in a storage for semantic information. Journal of Software 4(TBA) (2009)Google Scholar
  6. 6.
    Berners-Lee, T., Masinter, L., McCahill, M.: RFC 1738: Uniform resource locators (URL) (December 1994)Google Scholar
  7. 7.
    Koske, S.: Swarm Approaches for Semantic Triple Clustering and Retrieval in Distributed RDF Spaces. Technical Report B-09-04B, FU Berlin, Institut für Informatik (2009)Google Scholar
  8. 8.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Ives, Z.: Dbpedia: A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 11–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3), 158–182 (2005)CrossRefGoogle Scholar
  10. 10.
    Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th International Conf. on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Robert Tolksdorf
    • 1
  • Anne Augustin
    • 1
  • Sebastian Koske
    • 1
  1. 1.Netzbasierte Informationssysteme, Institut för InformatikFreie Universität Berlin 

Personalised recommendations