Universal Algorithms, Mathematics of Semirings and Parallel Computations

  • Grigory L. Litvinov
  • Victor P. Maslov
  • Anatoly Ya. Rodionov
  • Andrei N. Sobolevski
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 75)


This isaut]Grigory L. Litvinovaut]Victor P. Maslovaut]Anatoly Ya. Rodionovaut]Andrei N. Sobolevskii a survey paper on applications of mathematics of semirings to numerical analysis and computing. Concepts of universal algorithm and generic program are discussed. Relations between these concepts and mathematics of semirings are examined. A very brief introduction to mathematics of semirings (including idempotent and tropical mathematics) is presented. Concrete applications to optimization problems, idempotent linear algebra and interval analysis are indicated. It is known that some nonlinear problems (and especially optimization problems) become linear over appropriate semirings with idempotent addition (the so-called idempotent superposition principle). This linearity over semirings is convenient for parallel computations.


Systolic Array Bellman Equation Correspondence Principle Closure Operation Universal Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is partially supported by the RFBR grant 08-01-00601. The authors are grateful to A. G. Kushner for his kind help.


  1. 1.
    Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation and Compiling, Vol. 2: Compiling. Prentice-Hall, NJ (1973)Google Scholar
  2. 2.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, MA (1976)Google Scholar
  3. 3.
    Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)zbMATHGoogle Scholar
  4. 4.
    Avdoshin, S.M., Belov, V.V., Maslov, V.P., Chebotarev, A.M.: Design of computational media: mathematical aspects. In: Maslov, V.P., Volosov, K.A. (eds.) Mathematical Aspects of Computer Engineering. MIR Publishers, Moscow (1988) 9–145Google Scholar
  5. 5.
    Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, New York (1992)zbMATHGoogle Scholar
  6. 6.
    Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic Programming – An Introduction. Lect. Notes Comput. Sci., 1608 (1999) 28–115CrossRefGoogle Scholar
  7. 7.
    Backhouse, R.C., Carré, B.A.: Regular algebra applied to path-finding problems. J. Inst. Math. Appl 15 (1975) 161–186zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Barth, W., Nuding, E., Optimale Lösung von Intervallgleichungsystemen. Computing 12 (1974) 117–125zbMATHMathSciNetGoogle Scholar
  9. 9.
    Butkovič, P., Zimmermann, K.: A strongly polynomial algorithm for solving two-sided linear systems in max-algebra. Discrete Appl. Math. 154 (2006) 437–446zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Carré, B.A.: An algebra for network routing problems. J. Inst. Appl. 7 (1971) 273–294zbMATHCrossRefGoogle Scholar
  11. 11.
    Carré, B.A.: Graphs and Networks. The Clarendon Press, Oxford (1979)zbMATHGoogle Scholar
  12. 12.
    Cechlárová, K., Cuninghame-Green, R.A.: Interval systems of max-separable linear equations. Linear Algebra and its Applications 340 (2002) 215–224zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cohen, G., Gaubert, S., Quadrat, J.P.: Max-plus algebra and system theory: where we are and where to go now. Annu. Rev. Contr. 23 (1999) 207–219Google Scholar
  14. 14.
    Coxson, G.E.: Computing exact bounds on elements of an inverse interval matrix is NP-hard. Reliable Comput. 5 (1999) 137–142zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Cuninghame-Green, R.A.: Minimax algebra. Lect. Notes in Economics and Mathematical Systems, 166. Springer, Berlin (1979)Google Scholar
  16. 16.
    Cuninghame-Green, R.A.: Minimax algebra and applications. Adv. Imag. Electron Phys. 90 (1995) 1–121CrossRefGoogle Scholar
  17. 17.
    Cuningham-Green, R.A.: Minimax algebra and its applications. Fuzzy Set. Syst. 41 (1991) 251–267CrossRefGoogle Scholar
  18. 18.
    Cuningham-Green, R.A., Butkovic, P.: The equation ax=by over (max,+). Theor. Comput. Sci. 293 (2003) 3–12CrossRefGoogle Scholar
  19. 19.
    Del Moral, P.: A survey of Maslov optimization theory: optimality versus randomness. In: Kolokoltsov, V.N., Maslov, V.P. (eds.) Idempotent Analysis and Applications, pp. 243–302. Kluwer, Dordrecht (1997) (Appendix)Google Scholar
  20. 20.
    Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, New York (2006)zbMATHGoogle Scholar
  21. 21.
    Glazek, K.: A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences: With Complete Bibliography. Kluwer, Dordrecht (2002)zbMATHGoogle Scholar
  22. 22.
    Golan, J.S.: Semirings and their Applications. Kluwer, Dordrecht (1999)zbMATHGoogle Scholar
  23. 23.
    Gondran, M.: Path algebra and algorithms. In: Roy, B. (ed.). Combinatorial Programming: Methods and Applications, NATO Adv. Study Inst. Ser., Ser. C. 19 (1975) 137–148Google Scholar
  24. 24.
    Gondran, M., Minoux, M.: Graphes et algorithmes. Editions Eyrolles, Paris (1979, 1988)Google Scholar
  25. 25.
    Gondran, M., Minoux, M.: Graphes, dioïdes et semi-anneaux. Editions TEC&DOC, Paris (2001)Google Scholar
  26. 26.
    Gunawardena, J. (ed.): Idempotency. Publ. of the Newton Institute 11, Cambridge University Press, Cambridge (1998)Google Scholar
  27. 27.
    Hardouin, L., Cottenceau, B., Lhommeau, M., Le Corronc, E.: Interval systems over idempotent semirings. Lin. Algebra Appl. 431 (2009) 855–862zbMATHCrossRefGoogle Scholar
  28. 28.
    Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry, Oberwolfach Seminars 35. Birkhäuser, Basel (2007)Google Scholar
  29. 29.
    Kleene, S.C.: Representation of events in nerve sets and finite automata. In: McCarthy, J., Shannon, C. (eds.). Automata Studies, 3–40. Princeton University Press, Princeton (1956)Google Scholar
  30. 30.
    Klement, E.P., Pap, E. (eds.), Mathematics of Fuzzy Systems. 25th Linz Seminar on Fuzzy Set Theory, Linz, Austria, Feb 3–7, 2004, Abstracts. J. Kepler University, Linz (2004)Google Scholar
  31. 31.
    Kolokoltsov, V.N.: Idempotency structures in optimization. J. Math. Sci. 104(1) (2001) 847–880CrossRefGoogle Scholar
  32. 32.
    Kolokoltsov, V., Maslov, V.: Idempotent analysis and applications. Kluwer, Dordrecht (1997)zbMATHGoogle Scholar
  33. 33.
    Kreinovich, V., Lakeyev, A.V., Noskov, S.I.: Optimal solution of interval linear systems is intractable (NP-hard). Interval Computations 1 (1993) 6–14MathSciNetGoogle Scholar
  34. 34.
    Kreinovich, V., Lakeyev, A.V., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  35. 35.
    Kung, H.T.: Two-level pipelined systolic arrays for matrix multiplication, polynomial evaluation and discrete Fourier transformation. In: Demongeof, J. et al. (eds.). Dynamical Systems and Cellular Automata, 321–330. Academic Press, New York (1985)Google Scholar
  36. 36.
    Lehmann, D.J.: Algebraic structures for transitive closure. Theor. Comput. Sci. 4 (1977) 59–76zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Litvinov, G.L.: Dequantization of mathematics, idempotent semirings and fuzzy sets. In: Klement, E.P., Pap, E. (eds.), Mathematics of Fuzzy Systems, 113–117. J. Kepler University, Linz (2004)Google Scholar
  38. 38.
    Litvinov, G.L.: The Maslov dequantization, idempotent and tropical mathematics: a brief introduction. J. Math. Sci. 140(3) (2007) 426–444; arXiv:math.GM/0507014Google Scholar
  39. 39.
    Litvinov, G.L., Maslov, V.P.: Correspondence principle for idempotent calculus and some computer applications. (IHES/M/95/33), Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette (1995); arXiv:math.GM/0101021Google Scholar
  40. 40.
    Litvinov, G.L., Maslov, V.P.: The correspondence principle for idempotent calculus and some computer applications. In: Gunawardena, J. (ed.). Idempotency. Publ. of the Newton Institute 11, 20–443. Cambridge University Press, Cambridge (1998)Google Scholar
  41. 41.
    Litvinov, G.L. Maslov, V.P. (eds.): Idempotent mathematics and mathematical physics. Contemporary Mathematics 377, AMS, Providence, RI (2005)Google Scholar
  42. 42.
    Litvinov, G.L., Maslova, E.V.: Universal numerical algorithms and their software implementation. Programming and Computer Software 26(5) (2000) 275–280; arXiv:math.SC/0102114Google Scholar
  43. 43.
    Litvinov, G.L., Maslov, V.P., Rodionov, A.Ya.: A unifying approach to software and hardware design for scientific calculations and idempotent mathematics. International Sophus Lie Centre, Moscow (2000); arXiv:math.SC/0101069Google Scholar
  44. 44.
    Litvinov, G.L., Rodionov, A.Ya., Tchourkin, A.V.: Approximate rational arithmetics and arbitrary precision computations for universal algorithms. Int. J. Pure Appl. Math. 45(2) (2008) 193–204; arXiv:math.NA/0101152Google Scholar
  45. 45.
    Litvinov, G.L., Sobolevskiĭ, A.N.: Exact interval solutions of the discrete Bellman equation and polynomial complexity of problems in interval idempotent linear algebra. Dokl. Math. 62(2) (2000) 199–201; arXiv:math.LA/0101041Google Scholar
  46. 46.
    Litvinov, G.L., Sobolevskiĭ, A.N.: Idempotent interval analysis and optimization problems. Reliable Comput. 7(5) (2001) 353–377; arXiv:math.SC/0101080Google Scholar
  47. 47.
    Lorenz, M.: Object Oriented Software Development: A Practical Guide. Prentice Hall, NJ (1993)Google Scholar
  48. 48.
    Maslov, V.P.: New superposition principle for optimization problems. In: Seminaire sur les Equations aux Dérivées Partielles 1985/86. Centre Math. De l’Ecole Polytechnique, Palaiseau (1986) exposé 24Google Scholar
  49. 49.
    Maslov, V.P.: A new approach to generalized solutions of nonlinear systems. Soviet Math. Dokl. 42(1) (1987) 29–33Google Scholar
  50. 50.
    Maslov, V.P.: On a new superposition principle for optimization problems. Uspekhi Mat. Nauk [Russian Math. Surveys] 42(3) (1987) 39–48Google Scholar
  51. 51.
    Maslov, V.P.: Méthodes opératorielles. MIR, Moscow (1987)zbMATHGoogle Scholar
  52. 52.
    Maslov, V.P. et al.: Mathematics of semirings and its applications. Technical report, Institute for New Technologies, Moscow (1991) (in Russian)Google Scholar
  53. 53.
    Maslov, V.P., Volosov, K.A. (eds.). Mathematical Aspects of Computer Engineering. MIR, Moscow (1988)Google Scholar
  54. 54.
    Matijasevich, Yu.V.: A posteriori version of interval analysis. In: Arató, M., Kátai, I., Varga, L. (eds.). Topics in the Theoretical Basis and Applications of Computer Sciences, 339–349. Proc. Fourth Hung. Computer Sci. Conf., Budapest, Acad. Kiado (1986)Google Scholar
  55. 55.
    Mikhalkin, G.: Tropical geometry and its applications. Proceedings of the ICM, Madrid, Spain 2 (2006) 827–852; arXiv:math.AG/0601041v2Google Scholar
  56. 56.
    Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)zbMATHGoogle Scholar
  57. 57.
    Myskova, H.: Interval systems of max-separable linear equations. Lin. Algebra Appl. 403 (2005) 263–272zbMATHCrossRefGoogle Scholar
  58. 58.
    Myskova, H.: Control solvability of interval systems of max-separable linear equations. Lin. Algebra Appl. 416 (2006) 215–223zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Neumayer, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)Google Scholar
  60. 60.
    Pandit, S.N.N.: A new matrix calculus, SIAM J. Appl. Math. 9 (1961) 632–639zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Pin, J.E.: Tropical semirings. In: Gunawardena, J. (ed.). Idempotency. Publ. of the Newton Institute 11, 50–60. Cambridge University Press, Cambridge (1998)Google Scholar
  62. 62.
    Pohl, I.: Object-Oriented Programming Using C ++ (2nd edn). Addison-Wesley, MA (1997)zbMATHGoogle Scholar
  63. 63.
    Quadrat, J.P.: Théorèmes asymptotiques en programmation dynamique. Comptes Rendus Acad. Sci. Paris 311 (1990) 745–748zbMATHMathSciNetGoogle Scholar
  64. 64.
    Quadrat, J.P., Max-Plus working group: Maxplus Algebra Software.; (2007)
  65. 65.
    Robert, Y., Tristram, D.: An orthogonal systolic array for the algebraic path problem. Computing 39 (1987) 187–199zbMATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Rote, G.: A systolic array algorithm for the algebraic path problem (shortest paths; matrix inversion). Computing 34 (1985) 191–219zbMATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Sedukhin, S.G.: Design and analysis of systolic algorithms for the algebraic path problem. Comput. Artif. Intell. 11(3) (1992) 269–292zbMATHMathSciNetGoogle Scholar
  68. 68.
    Simon, I.: Recognizable sets with multiplicities in the tropical semiring. Lecture Notes in Computer Science, 324 (1988) 107–120CrossRefGoogle Scholar
  69. 69.
    Sobolevskiĭ, A.N.: nterval arithmetic and linear algebra over idempotent semirings. Doklady Akademii Nauk 369 (1999) 747–749 (in Russian)Google Scholar
  70. 70.
    Stepanov, A., Lee, M.: The standard template library. Hewlett-Packard, Palo Alto (1994)Google Scholar
  71. 71.
    Viro, O.: Dequantization of real algebraic geometry on a logarithmic paper. In: 3rd European Congress of Mathematics, Barcelona (2000); arXiv:math/0005163Google Scholar
  72. 72.
    Viro, O.: From the sixteenth Hilbert problem to tropical geometry. Japan. J. Math. 3 (2008) 1–30CrossRefMathSciNetGoogle Scholar
  73. 73.
    Voevodin, V.V.: Mathematical foundation of parallel computings, 343. World Scientific, Singapore (1992)Google Scholar
  74. 74.
    Vorobjev, N.N.: The extremal matrix algebra. Soviet Math. Dokl. 4 (1963) 1220–1223Google Scholar
  75. 75.
    Vorobjev, N.N.: Extremal algebra of positive matrices. Elektronische Informationsverarbeitung und Kybernetik 3 (1967) 39–57 (in Russian)Google Scholar
  76. 76.
    Vorobjev, N.N.: Extremal algebra of nonnegative matrices. Elektronische Informationsverarbeitung und Kybernetik 6 (1970) 302–312 (in Russian).Google Scholar
  77. 77.
    Zimmermann, K.: Interval linear systems and optimization problems over max-algebras. In: Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., Zimmermann, K. (eds.). Linear Optimization Problems with Inexact Data, 165–193. Springer, New York (2006)Google Scholar
  78. 78.
    Proceedings of the 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS’09), Rome, Italy May 23–May 29, IEEE Computer Society Press, 2009; ISBN: 978-1-4244-3751-1Google Scholar
  79. 79.
    Blithe, D. Rise of the graphics processor. Proc. of the IEEE 96(5) (2008) 761–778CrossRefGoogle Scholar
  80. 80.
    Owens, J.D. et al.: GPU computing. Proc. of the IEEE 96(5) (2008) 879–899CrossRefGoogle Scholar
  81. 81.
  82. 82.
  83. 83.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Grigory L. Litvinov
    • 1
    • 2
  • Victor P. Maslov
    • 3
  • Anatoly Ya. Rodionov
    • 2
  • Andrei N. Sobolevski
    • 1
    • 4
  1. 1.The J. V. Poncelet Laboratory (UMI 2615 CNRS)Independent University of MoscowMoscowRussia
  2. 2.D. V. Skobeltsyn Research Institute for Nuclear PhysicsMoscow State UniversityMoscowRussia
  3. 3.Faculty of PhysicsMoscow State UniversityMoscowRussia
  4. 4.A. A. Kharkevich Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations