Coarse Collective Dynamics of Animal Groups

  • Thomas A. Frewen
  • Iain D. Couzin
  • Allison Kolpas
  • Jeff Moehlis
  • Ronald Coifman
  • Ioannis G. Kevrekidis
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 75)

Abstract

The coarse-grained, computer-assisted analysis of models of collective dynamics in animal groups involves (a) identifying appropriate observables that best describe the state of these complex systems and (b) characterizing the dynamics of such observables. We devise “equation-free” simulation protocols for the analysis of a prototypical individual-based model of collective group dynamics. Our approach allows the extraction of information at the macroscopic level via parsimonious usage of the detailed, “microscopic” computational model. Identification of meaningful coarse observables (“reduction coordinates”) is critical to the success of such an approach, and we use a recently-developed dimensionality-reduction approach (diffusion maps) to detect good observables based on data generated by local model simulation bursts. This approach can be more generally applicable to the study of coherent behavior in a broad class of collective systems (e.g., collective cell migration).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Couzin, I. D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32 (2003) 1–75CrossRefGoogle Scholar
  2. 2.
    Deneubourg, J. L., Goss, S.: Collective patterns and decision making. Ethol. Ecol. Evol. 1 (1989) 295–311CrossRefGoogle Scholar
  3. 3.
    Partridge, B. L.: The structure and function of fish schools. Sci. Am. 246 (1982) 114–123CrossRefGoogle Scholar
  4. 4.
    Parrish, J. K., Edelstein-Keshet, L.: Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284 (1999) 99–101CrossRefGoogle Scholar
  5. 5.
    Couzin, I.: Collective Minds. Nature 445 (2007) 715Google Scholar
  6. 6.
    Couzin, I. D., Krause, J., Franks, N. R., Levin, S.: Effective leadership and decision making in animal groups on the move. Nature 433 (2005) 513–516CrossRefGoogle Scholar
  7. 7.
    Coifman, R., Lafon, S., Lee, A., Maggioni, M., Nadler, B., Warner, F., Zucker, S. Geometric Diffusions as a tool for Harmonic Analysis and structure definition of data. Part I: Diffusion maps. Proc. Natl. Acad. Sci. USA 102 (2005) 7426–7431CrossRefGoogle Scholar
  8. 8.
    Kevrekidis, I. G., Gear, C. W., Hummer, G.: Equation-free: The computer-aided analysis of complex multiscale systems. AIChE J. 50 (2004) 1346–1355CrossRefGoogle Scholar
  9. 9.
    Kolpas, A., Moehlis, J., Kevrekidis, I. G.: Coarse-grained analysis of stochasticity-induced switching between collective motion states. Proc. Natl. Acad. Sci. USA 104 (2007) 5931–5935CrossRefGoogle Scholar
  10. 10.
    Risken, H.: The Fokker-Planck Equation, Methods of solution and applications. Springer, Berlin (1989)MATHGoogle Scholar
  11. 11.
    Haataja, M., Srolovitz, D., Kevrekidis, I. G.: Apparent hysteresis in a driven system with self-organized drag. Phys. Rev. Lett. 92 (2004) 160603CrossRefGoogle Scholar
  12. 12.
    Hummer, G., Kevrekidis, I. G.: Coarse Molecular Dynamics of a Peptide Fragment: Free Energy, Kinetics and Long Time Dynamics Computations. J. Chem. Phys. 118 (2003) 10762–10773Google Scholar
  13. 13.
    Kopelevich, D., Panagiotopoulos, A. Z., Kevrekidis, I. G.: Coarse-Grained Kinetic Computations for Rare Events: Application to Micelle Formation. J. Chem. Phys. 122 (2005) 044908CrossRefGoogle Scholar
  14. 14.
    Sriraman, S., Kevrekidis, I. G., Hummer, G.: Coarse Nonlinear Dynamics and Metastability of Filling-Emptying Transitions: Water in Carbon Nanotubes. Phys. Rev. Lett. 95 (2005) 130603CrossRefGoogle Scholar
  15. 15.
    Baker, C.: The Numerical Treatment of Integral Equations. Clarendon Press, Oxford (1977)MATHGoogle Scholar
  16. 16.
    Kolpas, A., Frewen, T. A., Moehlis, J., Kevrekidis, I. G.: Coarse analysis of collective motion with different communication mechanisms. Math. Biosci. 214 (2008) 49–57MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thomas A. Frewen
    • 1
  • Iain D. Couzin
    • 3
  • Allison Kolpas
    • 4
  • Jeff Moehlis
    • 5
  • Ronald Coifman
    • 6
  • Ioannis G. Kevrekidis
    • 1
    • 2
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA
  2. 2.PACM and MathematicsPrinceton UniversityPrincetonUSA
  3. 3.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA
  4. 4.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  5. 5.Department of Mechanical EngineeringUniversity of CaliforniaSanta BarbaraUSA
  6. 6.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations