Colour Image Segmentation Based on a Spiking Neural Network Model Inspired by the Visual System

  • QingXiang Wu
  • T. M. McGinnity
  • Liam Maguire
  • G. D. Valderrama-Gonzalez
  • Patrick Dempster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6215)

Abstract

The human visual system demonstrates powerful image processing functionalities. Inspired by the visual system, a spiking neural network is proposed to segment visual images. The network is constructed in the two parts. The first part is a spiking neural network which is composed of photon receptors, cone and rod cells, and ON/OFF ganglion cells. Colour features can be extracted and passed through different ON/OFF pathways. The second part is a BP neural network which is trained to recognize the colour features and segment the visual image. The network has been successfully applied to segment leukocytes from blood smeared images.

Keywords

Spiking neural networks image segmentation visual system visual image 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Masland, R.H.: The fundamental plan of the retina. Nature Neurosci. 4, 877–886 (2001)CrossRefGoogle Scholar
  2. 2.
    Wassle, H.: Parallel processing in the mammalian retina. Nature Rev. Neurosci. 5, 747–757 (2004)CrossRefGoogle Scholar
  3. 3.
    Nelson, R., Kolb, H.: On and off pathways in the vertebrate retina and visual system. In: Chalupa, L.M., Werner, J.S. (eds.) The Visual Neurosciences, pp. 260–278. MIT Press, Cambridge (2003)Google Scholar
  4. 4.
    Demb, J.B.: Cellular mechanisms for direction selectivity in the retina. Neuron 55, 179–186 (2007)CrossRefGoogle Scholar
  5. 5.
    Taylor, W.R., Vaney, D.I.: New directions in retinal research. Trends Neurosci. 26, 379–385 (2003)CrossRefGoogle Scholar
  6. 6.
    Kandel, E.R., Shwartz, J.H.: Principles of neural science. Edward Amold Ltd. (1981)Google Scholar
  7. 7.
    Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Oxford (1999)Google Scholar
  8. 8.
    Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge (2001)MATHGoogle Scholar
  9. 9.
    Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, populations, Plasticity. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  10. 10.
    Wu, Q.X., McGinnity, T.M., Maguire, L.P., Belatreche, A., Glackin, B.: 2D Co-ordinate Transformation Based on a Spike Timing-Dependent Plasticity Learning Mechanism. Journal of Neural Networks 21, 1318–1327 (2008)CrossRefGoogle Scholar
  11. 11.
    Wu, Q.X., McGinnity, T.M., Maguire, L.P., Belatreche, A., Glackin, B.: Processing Visual Stimuli Using Hierarchical Spiking Neural Networks. International Journal of Neurocomputing 71, 2055–2068 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • QingXiang Wu
    • 1
  • T. M. McGinnity
    • 1
  • Liam Maguire
    • 1
  • G. D. Valderrama-Gonzalez
    • 1
  • Patrick Dempster
    • 1
  1. 1.Intelligent Systems Research CentreUniversity of Ulster at Magee Campus, DerryNorthern IrelandUK

Personalised recommendations