Genome-Wide DNA Methylation Profiling in 40 Breast Cancer Cell Lines

  • Leng Han
  • Siyuan Zheng
  • Shuying Sun
  • Tim HM Huang
  • Zhongming Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6215)

Abstract

DNA methylation plays important roles in gene regulation and functions. Aberrant methylation, either hypomethylation or hypermethylation, has been reported to cause various diseases, especially cancers. Breast cancer ranked the fifth according to the number of cancer deaths in the world. To systematically characterize the epigenetic modification in breast cancer, we examined the genome-wide methylation profiling in 40 breast cancer cell lines. We identified a gene signature consisting of 345 differentially methylated genes, which could be used to discriminate estrogen receptor (ER)-negative and ER-positive breast cancer cell lines. This gene signature is promising for diagnosis and therapies of breast cancer. In the follow up functional analysis of this gene signature, three enriched networks could be highlighted. Interestingly, one of these networks contained estrogen receptor, implying its functional importance of ER-centric module. Finally, we examined the correlation between methylation and expression of these breast cancer cell lines. Very few genes showed significant correlation, suggesting that gene expression regulated by methylation is a complex biological process.

Keywords

breast cancer estrogen receptor methylation network expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Putti, T.C., El-Rehim, D.M., Rakha, E.A., Paish, C.E., Lee, A.H., Pinder, S.E., Ellis, I.O.: Estrogen Receptor-negative Breast Carcinomas: a Review of Morphology and Immunophenotypical Analysis. Mod. Pathol. 18(1), 26–35 (2005)CrossRefGoogle Scholar
  2. 2.
    Antequera, F.: Structure, Function and Evolution of CpG Island Promoters. Cell Mol. Life Sci. 60(8), 1647–1658 (2003)CrossRefGoogle Scholar
  3. 3.
    Jones, P.A., Baylin, S.B.: The Fundamental Role of Epigenetic Events in Cancer. Nat. Rev. Genet. 3(6), 415–428 (2002)Google Scholar
  4. 4.
    Cho, B., Lee, H., Jeong, S., Bang, Y.J., Lee, H.J., Hwang, K.S., Kim, H.Y., Lee, Y.S., Kang, G.H., Jeoung, D.I.: Promoter Hypomethylation of a Novel Cancer/testis Antigen Gene CAGE is Correlated with its Aberrant Expression and is Seen in Premalignant Stage of Gastric Carcinoma. Biochem. Biophys. Res. Commun. 307(1), 52–63 (2003)CrossRefGoogle Scholar
  5. 5.
    Chen, R.Z., Pettersson, U., Beard, C., Jackson-Grusby, L., Jaenisch, R.: DNA Hypomethylation Leads to Elevated Mutation Rates. Nature 395(6697), 89–93 (1998)CrossRefGoogle Scholar
  6. 6.
    Eden, A., Gaudet, F., Waghmare, A., Jaenisch, R.: Chromosomal Instability and Tumors Promoted by DNA Hypomethylation. Science 300(5618), 455 (2003)CrossRefGoogle Scholar
  7. 7.
    Baylin, S.B., Herman, J.G.: DNA Hypermethylation in Tumorigenesis: Epigenetics Joins Genetics. Trends Genet. 16(4), 168–174 (2000)CrossRefGoogle Scholar
  8. 8.
    Sakai, T., Toguchida, J., Ohtani, N., Yandell, D.W., Rapaport, J.M., Dryja, T.P.: Allele-specific Hypermethylation of the Retinoblastoma Tumor-suppressor Gene. Am. J. Hum. Genet. 48(5), 880–888 (1991)Google Scholar
  9. 9.
    Ito, Y., Koessler, T., Ibrahim, A.E., Rai, S., Vowler, S.L., Abu-Amero, S., Silva, A.L., Maia, A.T., Huddleston, J.E., Uribe-Lewis, S., et al.: Somatically Acquired Hypomethylation of IGF2 in Breast and Colorectal Cancer. Hum. Mol. Genet. 17(17), 2633–2643 (2008)CrossRefGoogle Scholar
  10. 10.
    Fernandez, S.V., Snider, K.E., Wu, Y.Z., Russo, I.H., Plass, C., Russo, J.: DNA- Methylation Changes in a Human Cell Model of Breast Cancer Progression. Mutat. Res. (2010) (Advanced online)Google Scholar
  11. 11.
    Laird, P.W.: Principles and Challenges of Genome-wide DNA Methylation Analysis. Nat. Rev. Genet. 11(3), 191–203 (2010)CrossRefGoogle Scholar
  12. 12.
    Sun, S., Yan, P.S., Huang, T.H., Lin, S.: Identifying Differentially Methylated Genes Using Mixed Effect and Generalized Least Square Models. BMC Bioinformatics 10, 404 (2009)CrossRefGoogle Scholar
  13. 13.
    Guo, A.Y., Sun, J., Riley, B.P., Thiselton, D.L., Kendler, K.S., Zhao, Z.: The Dystrobrevin-binding Protein 1 Gene: features and networks. Mol. Psychiatry 14(1), 18–29 (2009)CrossRefGoogle Scholar
  14. 14.
    Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F.L., Fevr, T., Clark, L., Bayani, N., Coppe, J.P., Tong, F., et al.: A Collection of Breast Cancer Cell Lines for the Study of Functionally Distinct Cancer Subtypes. Cancer Cell 10(6), 515–527 (2006)CrossRefGoogle Scholar
  15. 15.
    Gazdar, A.F., Kurvari, V., Virmani, A., Gollahon, L., Sakaguchi, M., Westerfield, M., Kodagoda, D., Stasny, V., Cunningham, H.T.: Wistuba, II et al: Characterization of Paired Tumor and Non-tumor Cell Lines Established from Patients with Breast Cancer. Int. J. Cancer 78(6), 766–774 (1998)CrossRefGoogle Scholar
  16. 16.
    Klein, C.B., Costa, M.: DNA Methylation and Gene Expression: Introduction and Overview. Mutat. Res. 386(2), 103–105 (1997)CrossRefGoogle Scholar
  17. 17.
    Flanagan, J.M., Cocciardi, S., Waddell, N., Johnstone, C.N., Marsh, A., Henderson, S., Simpson, P., Silva, L., Khanna, K., Lakhani, S., et al.: DNA Methylome of Familial Breast Cancer Identifies Distinct Profiles Defined by Mutation Status. Am. J. Hum. Genet. 86(3), 420–433 (2010)CrossRefGoogle Scholar
  18. 18.
    Metzker, M.L.: Sequencing Technologies - the Next Generation. Nat. Rev. Genet. 11(1), 31–46 (2010)CrossRefGoogle Scholar
  19. 19.
    Clarke, J., Wu, H.C., Jayasinghe, L., Patel, A., Reid, S., Bayley, H.: Continuous Base Identification for Single-molecule Nanopore DNA Sequencing. Nat. Nanotechnol. 4(4), 265–270 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Leng Han
    • 1
    • 2
  • Siyuan Zheng
    • 1
    • 2
  • Shuying Sun
    • 3
  • Tim HM Huang
    • 4
  • Zhongming Zhao
    • 1
    • 2
    • 5
  1. 1.Department of Biomedical InformaticsVanderbilt University School of MedicineNashvilleUSA
  2. 2.Bioinformatics Resources CenterVanderbilt UniversityNashvilleUSA
  3. 3.Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandUSA
  4. 4.Human Cancer Genetics ProgramThe Ohio State UniversityColumbusUSA
  5. 5.Department of Cancer BiologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations