Multichannel System of Audio-Visual Support of Remote Mobile Participant at E-Meeting

  • Alexander L. Ronzhin
  • V. Yu. Budkov
  • Alexey A. Karpov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6294)


Web-based collaboration using the wireless devices that have multimedia playback capabilities is a viable alternative to traditional face-to-face meetings. E-meetings are popular in businesses because of their cost savings. To provide quick and effective engagement to the meeting activity, the remote user should be able to perceive whole events in the meeting room and have the same possibilities like participants inside. The technological framework of the developed intelligent meeting room implements multichannel audio-visual system for participant activity detection and automatically composes actual multimedia content for remote mobile user. The developed web-based application for remote user interaction with equipment of the intelligent meeting room and organization of E-meetings were tested with Nokia mobile phones.


E-meeting smart space remote collaboration mobile communication voice activity detection multimodal interfaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yankelovich, N., Kaplan, J., Simpson, N., Provino, J.: Porta-person: telepresence for the connected meeting room. In: Proceedings of CHI 2007, pp. 2789–2794 (2007)Google Scholar
  2. 2.
    McCowan, I., Gatica-Perez, D., Bengio, S., Moore, D., Bourlard, H.: Towards computer understanding of human interactions. In: Aarts, E., Collier, R.W., van Loenen, E., de Ruyter, B. (eds.) EUSAI 2003. LNCS, vol. 2875, pp. 235–251. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Waibel, A., Steusloff, H., Stiefelhagen, R.: CHIL—Computers in the human interaction loop. In: Proc. of 5th IAMIS Workshop (2004)Google Scholar
  4. 4.
    Danielson, T., Panoke-Babatz, U., et al.: The AMIGO project: Advanced Group Communication Model for Computer-based Communication Environment. In: Proc. of CSCW’86 (1986)Google Scholar
  5. 5.
    Kaiser, E.: Can Modeling Redundancy in Multimodal, Multi-Party Tasks Support Dynamic Learning? In: CHI ’05 Workshop: CHI Virtuality 2005 (2005)Google Scholar
  6. 6.
    Op den Akker, R., Hofs, D., Hondorp, H., op den Akker, H., Zwiers, J., Nijholt, A.: Supporting Engagement and Floor Control in Hybrid Meetings. In: Esposito, A., Vích, R. (eds.) COST Action 2102 2008. LNCS (LNAI), vol. 5641, pp. 276–290. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Fredouille, C., Evans, N.: The influence of speech activity detection and overlap on speaker diarization for meeting room recordings. In: INTERSPEECH 2007, pp. 2953–2956 (2007)Google Scholar
  8. 8.
    The 2009 (RT-09) Rich Transcription Meeting Recognition Evaluation Plan (2009),
  9. 9.
    Tranter, S., Reynolds, D.: An Overview of Automatic Speaker Diarization Systems. IEEE Trans. ASLP 14(5), 1557–1565 (2006)Google Scholar
  10. 10.
    Markov, K., Nakamura, S.: Never-Ending Learning System for Online Speaker Diarization. In: IEEE ASRU Workshop, pp. 699–704 (2007)Google Scholar
  11. 11.
    Pfau, T., Ellis, D., Stolcke, D.: Multispeaker Speech Activity Detection for the ICSI Meeting Recorder. In: IEEE ASRU Workshop, pp. 107–110 (2001)Google Scholar
  12. 12.
    Dines, J., Vepa, J., Hain, T.: The segmentation of multi-channel meeting recordings for automatic speech recognition. In: ICSLP 2006, pp. 1213–1216 (2006)Google Scholar
  13. 13.
    Laskowski, K., Jin, Q., Schultz, T.: Crosscorrelation based multispeaker speech activity detection. In: INTERSPEECH 2004, pp. 973–976 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexander L. Ronzhin
    • 1
  • V. Yu. Budkov
    • 1
  • Alexey A. Karpov
    • 1
  1. 1.SPIIRASSt. PetersburgRussia

Personalised recommendations