Implementing Temporal Defeasible Logic for Modeling Legal Reasoning

  • Guido Governatori
  • Antonino Rotolo
  • Rossella Rubino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6284)

Abstract

In this paper we briefly present an efficient implementation of temporal defeasible logic, and we argue that it can be used to efficiently capture the the legal concepts of persistence, retroactivity and periodicity. In particular, we illustrate how the system works with a real life example of a regulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.: Towards a general theory of action and time. Artificial Intelligence 23 (1984)Google Scholar
  2. 2.
    Antoniou, G.: A nonmonotonic rule system using ontologies. In: Proc. RuleML 2002. CEUR Workshop Proceedings, vol.  60 (2002)Google Scholar
  3. 3.
    Antoniou, G., Bikakis, A.: DR-Prolog: A system for defeasible reasoning with rules and ontologies on the semantic web. IEEE Transactions on Knowledge and Data Engineering (2), 233–245 (2007)Google Scholar
  4. 4.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defeasible logic. ACM Transactions on Computational Logic 2, 255–287 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible logic into logic programming. Theory and Practice of Logic Programming 6, 703–735 (2006)CrossRefMATHGoogle Scholar
  6. 6.
    Antoniou, M.R., Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient defeasible reasoning systems. International Journal of Artificial Intelligence Tools 10 (2001)Google Scholar
  7. 7.
    Augusto, J., Simari, G.: Temporal defeasible reasoning. Knowledge and Information Systems 3, 287–318 (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Bassiliades, N., Antoniou, G., Vlahavas, I.: A defeasible logic reasoner for the Semantic Web. International Journal on Semantic Web and Information Systems 2, 1–41 (2006)CrossRefGoogle Scholar
  9. 9.
    Cervesato, I., Franceschet, M., Montanari, A.: A guided tour through some extensions of the event calculus. Computational Intelligence 16(2), 307–347 (2000)CrossRefGoogle Scholar
  10. 10.
    ESTRELLA Project. The reference LKIF inference engine. Deliverable 4.3, European Commission (2008)Google Scholar
  11. 11.
    Gordon, T.F., Governatori, G., Rotolo, A.: Rules and norms: Requirements for rule interchange languages in the legal domain. In: Governatori, et al. (eds.) [12]Google Scholar
  12. 12.
    Governatori, G., Hall, J., Paschke, A. (eds.): RuleML 2009. LNCS, vol. 5858. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines in temporal modal defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 486–496. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Governatori, G., Pham, D.: A semantic web based architecture for e-contracts in defeasible logic. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791, pp. 145–159. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Governatori, G., Rotolo, A.: Temporal defeasible logic has linear complexity. In: Proceedings NMR 2010. CEUR Workshops Proceedings (2010)Google Scholar
  16. 16.
    Governatori, G., Rotolo, A.: Changing legal systems: Legal abrogations and annulments in defeasible logic. The Logic Journal of IGPL (forthcoming)Google Scholar
  17. 17.
    Governatori, G., Rotolo, A., Riveret, R., Palmirani, M., Sartor, G.: Variants of temporal defeasible logic for modelling norm modifications. In: Proc. ICAIL 2007, pp. 155–159 (2007)Google Scholar
  18. 18.
    Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic. In: ICAIL 2005, pp. 25–34. ACM Press, New York (2005)Google Scholar
  19. 19.
    Governatori, G., Terenziani, P.: Temporal extensions to defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 476–485. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Hawke, S.: Bringing order to chaos: RIF as the new standard for rule interchange. In: Governatori, et al. (eds.) [12], p. 1, http://www.w3.org/2009/Talks/1105-ruleml/
  21. 21.
    Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, et al. (eds.) [12]Google Scholar
  22. 22.
    Maher, M.: Propositional defeasible logic has linear complexity. Theory and Practice of Logic Programming 1, 691–711 (2001)CrossRefMATHGoogle Scholar
  23. 23.
    Rubino, R.: Una implementazione della logica defeasible temporale per il ragionamento giuridico. PhD thesis, CIRSFID, University of Bologna (2009)Google Scholar
  24. 24.
    Rubino, R., Rotolo, A.: A Java implementation of temporal defeasible logic. In: Governatori, et al. (eds.) [12]Google Scholar
  25. 25.
    Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the Common Sense Law of Inertia. MIT Press, Cambridge (1997)Google Scholar
  26. 26.
    Turner, H.: Representing actions in logic programs and default theories: A situation calculus approach. Journal of Logic Programming 31(1-3), 245–298 (1997)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Guido Governatori
    • 2
  • Antonino Rotolo
    • 1
  • Rossella Rubino
    • 1
  1. 1.CIRSFIDUniversity of BolognaItaly
  2. 2.Queensland Research LaboratoryNICTAAustralia

Personalised recommendations