Advertisement

Speaker Adaptation and Speech-Spectral Deformation

  • Yoshinao Shiraki
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 79)

Abstract

We study the relation between a spectral deformation in speech processing and a geometrical deformation theory. We show that topological field theory yields the systematic treatment of these two methods. Some of the examples and the application to speech-spectra of classical mathematical ideas are discussed.

Keywords

Speech-Spectrum Speaker Adaptation Geometric Deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Floer, A.: Witten’s complex and infinite dimensional Morse theory. J. Diff. Geom. 30, 207–221 (1989)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Fukaya, K.: Floer homology of connected sum of homology 3-spheres. Topology 35(1), 89–136 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ho, C.H., Rentzos, D., Vaseghi, S.: Formant Model estimation and transformation for Voice Morphing. In: Proc. of ICSLP 2002, pp. 2149–2152 (2002)Google Scholar
  4. 4.
    Milnor, J.W.: Lectures on the h-cobordism theorem. Math Notes 1. Princeton University Press, Princeton (1965)zbMATHGoogle Scholar
  5. 5.
    Ohkura, K., Sugiyama, M., Sagayama, S.: Speaker adaptation based on transfer vector field smoothing method with continuous mixture density HMMs. IEICE Trans. J76-D-II(12), 2469–2476 (1993)Google Scholar
  6. 6.
    Shikano, K., Lee, K.-F., Reddy, R.: Speaker adaptation through vector quantization. In: Proc. of ICASSP 1986, vol. 49(5), pp. 2643–2646 (1986)Google Scholar
  7. 7.
    Shiraki, Y., Honda, M.: Speaker adaptation algorithms based on piece-wise moving adaptive segment quantization method. In: Proc. of ICASSP 1990, vol. S12(5), pp. 657–660 (1990)Google Scholar
  8. 8.
    Smale, S.: Generalized Poincarè’s conjecture in dimensions greater than four. Ann. Math. 74, 391–406 (1961)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Witten, E.: Supersymmetry and Morse theory. J. Diff. Geom. 17, 661–692 (1982)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yoshinao Shiraki
    • 1
  1. 1.Toho University 

Personalised recommendations