Solving the Parameter Setting in Multi-Objective Evolutionary Algorithms Using Grid::Cluster

  • Eduardo Segredo
  • Casiano Rodríguez
  • Coromoto León
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 79)


The parameter values of a Multi-objective Evolutionary Algorithm greatly determine the behavior of the algorithm to find good solutions within a reasonable time for a particular problem. In general, static strategies consume lots of computational resources and time. In this work, a tool is used to develop a static strategy to solve the parameter setting problem, applied to the particular case of the Multi-objective 0/1 Knapsack Problem. GRID::Cluster makes feasible a dynamic on-the-fly setup of a secure and fault-tolerant virtual heterogeneous parallel machine without having administrator privileges. In the present work is used to speed-up the process of finding the best configuration, through optimal use of available resources. It allows the construction of a driver that launches, in a systematically way, different algorithm instances. Computational results show that, for a particular problem instance, the best behavior can be obtained with the same parameter values regardless of the applied algorithm. However, for different problem instances, the algorithms have to be tuned with other parameter values and this is a tedious process, since all experiments have to be repeated, for each new set of parameter values to be studied.


Parameter Setting Multi-objective Optimization Multi-objective Evolutionary Algorithms GRID::Cluster METCO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    GRID:Cluster Module Documentation at CPAN Website,
  2. 2.
    Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – a platform and programming language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Cesar, E., Moreno, A., Sorribes, J., Luque, E.: Modeling master/worker applications for automatic performance tuning. Parallel Computing Journal 3(7), 568–589 (2006)CrossRefGoogle Scholar
  4. 4.
    De Jong, K.: Parameter setting in eas: a 30 year perspective. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms, pp. 1–18. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in evolutionary algorithms. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms, pp. 19–46. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Emmerich, M., Hosenberg, R.: TEA – A Toolbox for the Design of Parallel Evolutionary Algorithms in C++. Tech. Rep. CI-106/01, SFB 531, University of Dortmund, Germany (2001)Google Scholar
  7. 7.
    Gagné, C., Parizeau, M.: Genericity in Evolutionary Computation Software Tools: Principles and Case Study. International Journal on Artificial Intelligence Tools 15(2), 173–194 (2006)CrossRefGoogle Scholar
  8. 8.
    Jaszkiewicz, A.: On the computational efficiency of multiple objective metaheuristics. the knapsack problem case study. European Journal of Operational Research 158, 418–433 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    León, C., Miranda, G., Segredo, E., Segura, C.: Parallel Library of Multi-objective Evolutionary Algorithms. In: 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing, pp. 28–35 (2009)Google Scholar
  10. 10.
    León, C., Miranda, G., Segura, C.: METCO: A Parallel Plugin-Based Framework for Multi-Objective Optimization. International Journal on Artificial Intelligence Tools 18(4) (2009)Google Scholar
  11. 11.
    Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.G.: ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 386–400. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Rechenberg, I.: Evolution strategy. Zuarda et. al. pp. 147–159 (1994)Google Scholar
  13. 13.
    Rodrigues de Souza, J., Argollo, E., Duarte, A., Rexachs, D., Luque, E.: Fault Tolerant Master-Worker over a Multi-Cluster Architecture. In: International Conference on Parallel Computing (ParCo), pp. 465–472 (2005)Google Scholar
  14. 14.
    Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998), CrossRefGoogle Scholar
  15. 15.
    Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eduardo Segredo
    • 1
  • Casiano Rodríguez
    • 1
  • Coromoto León
    • 1
  1. 1.Dpto. EstadísticaI. O. y Computación. Universidad de La LagunaSanta Cruz de TenerifeSpain

Personalised recommendations