Pano UMECHIKA: A Crowded Underground City Panoramic View System

  • Ismail Arai
  • Maiya Hori
  • Norihiko Kawai
  • Yohei Abe
  • Masahiro Ichikawa
  • Yusuke Satonaka
  • Tatsuki Nitta
  • Tomoyuki Nitta
  • Harumitsu Fujii
  • Masaki Mukai
  • Soichiro Horimi
  • Koji Makita
  • Masayuki Kanbara
  • Nobuhiko Nishio
  • Naokazu Yokoya
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 79)

Abstract

Toward a really useful navigation system, utilizing spherical panoramic photos with maps like Google Street View is efficient. Users expect the system to be available in all areas they go. Conventional shooting methods obtain the shot position from GPS sensor. However, indoor areas are out of GPS range. Furthermore, most urban public indoor areas are crowded with pedestrians. Even if we blur the pedestrians in a photo, the photos with blurring are not useful for scenic information. Thus, we propose a method which simultaneously subtracts pedestrians based on background subtraction method and generates location metadata by manually input from maps. Using these methods, we achieved an underground panoramic view system which displays no pedestrians.

Keywords

spherical panorama navigation system background subtraction Wi-Fi positioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
    Nishio, N., Sakamoto, N., Arai, I.: Adjunct Proceedings of Pervasive 2009, pp. 269–272 (2009)Google Scholar
  4. 4.
    Kawai, N., Machikita, K., Sato, T., Yokoya, N.: Proc. Asian Conf. on Computer Vision (ACCV(2)), pp. 359–370 (2009)Google Scholar
  5. 5.
    Cheng, Y., Chawathe, Y., LaMarca, A., Krumm, J.: Proceeings of Mobisys 2005, pp. 233–245 (2005)Google Scholar
  6. 6.
    Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The Fifth Annual ACM/IEEE International Conference on Mobile Computing and Networking, MOBICOM 1999, pp. 59–68 (1999)Google Scholar
  7. 7.
    Yahoo! Maps (JAPAN), http://map.yahoo.co.jp/chika
  8. 8.
  9. 9.
    Lowe, D.G.: International Journal of Computer Vision 60(2), 91 (2004)Google Scholar
  10. 10.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Computer Vision and Image Understanding (CVIU) 110(3), 346 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ismail Arai
    • 1
  • Maiya Hori
    • 2
  • Norihiko Kawai
    • 2
  • Yohei Abe
    • 1
  • Masahiro Ichikawa
    • 1
  • Yusuke Satonaka
    • 1
  • Tatsuki Nitta
    • 1
  • Tomoyuki Nitta
    • 1
  • Harumitsu Fujii
    • 1
  • Masaki Mukai
    • 1
  • Soichiro Horimi
    • 1
  • Koji Makita
    • 2
  • Masayuki Kanbara
    • 2
  • Nobuhiko Nishio
    • 1
  • Naokazu Yokoya
    • 2
  1. 1.Ubiquitous Computing and Networking Lab.Ritsumeikan UniversityKusatsuJapan
  2. 2.Vision and Media Computing Lab.Nara Institute of Science and TechnologyIkomaJapan

Personalised recommendations