A Support Vector Regression Approach to Predict Carbon Dioxide Exchange

  • Juan F. De Paz
  • Belén Pérez
  • Angélica González
  • Emilio Corchado
  • Juan M. Corchado
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 79)


In this study, a new monitoring system for carbon dioxide exchange is presented. The mission of the intelligent environment presented in this work, is to globally monitor the interaction between the ocean’s surface and the atmosphere, facilitating the work of oceanographers. This paper proposes a hybrid intelligent system integrates case-based reasoning (CBR) and support vector regression (SVR) characterised for their efficiency for data processing and knowledge extraction. Results have demonstrated that the system accurately predicts the evolution of the carbon dioxide exchange.


Carbon dioxide Support Vector Regression Case-based Reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bajo, J., Corchado, J.M.: Evaluation and monitoring of the air-sea interaction using a CBR-Agents approach. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 50–62. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bajo, J., Corchado, J.M.: Multiagent architecture for monitoring the North-Atlantic carbon dioxide Exchange rate. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 321–330. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Corchado, J.M., Aiken, J., Corchado, E., Lefevre, N., Smyth, T.: Quantifying the Ocean’s CO2 Budget with a CoHeL-IBR System. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 533–546. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Kolodner, J.: Case-based reasoning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  5. 5.
    Lefevre, N., Aiken, J., Rutllant, J., Daneri, G., Lavender, S., Smyth, T.: Observations of pCO2 in the coastal upwelling off Chile: Sapatial and temporal extrapolation using satellite data. Journal of Geophysical research 107(6), 8.1–8.15 (2002)CrossRefGoogle Scholar
  6. 6.
    Perner, P.: Different Learning Strategies in a Case-Based Reasoning System for Image Interpretation. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 251–261. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Sarmiento, J.L., Dender, M.: Carbon biogeochemistry and climate change. Photosynthesis Research 39, 209–234 (1994)CrossRefGoogle Scholar
  8. 8.
    Takahashi, T., Olafsson, J., Goddard, J.G., Chipman, D.W., Sutherland, S.C.: Seasonal Variation of CO2 and nutrients in the High-latitude surface oceans: a comparative study. Global biochemical Cycles 7(4), 843–878 (1993)CrossRefGoogle Scholar
  9. 9.
    Kolodner, J.: Maintaining organization in a dynamic long-term memory. Morgan Kaufmann, San Francisco (1993)Google Scholar
  10. 10.
    Kolodner, J.: Maintaining organization in a dynamic long-term memory. Cognitive Science 7, 243–280 (1983)CrossRefGoogle Scholar
  11. 11.
    Kolodner, J.: Reconstructive memory, a computer model. Cognitive Science 7(4), 281–328 (1983)CrossRefGoogle Scholar
  12. 12.
    Leake, D., Kendall-Morwick, J.: Towards Case-Based Support for e-Science Workflow Generation by Mining Provenance. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 269–283. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Vapnik, V.N.: An overview of statistical learning theory. IEEE Transactions on Neural Networks 10, 988–999 (1999)CrossRefGoogle Scholar
  14. 14.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  15. 15.
    Smola, A., Scolköpf, B.: A tutorial on support vector regression. Statistics and Computing (2003)Google Scholar
  16. 16.
    Jeffer, C.D., Woolf, D.K., Robinson, I.S., Donlon, C.J.: One-dimensional modelling of convective CO2 exchange in the Tropical Atlantic. Ocean Modelling 19(3-4), 161–182 (2007)CrossRefGoogle Scholar
  17. 17.
    Jeffery, C.D., Robinson, I.S., Woolf, D.K., Donlon, C.J.: The response to phase-dependent wind stress and cloud fraction of the diurnal cycle of SST and air–sea CO2 exchange, vol. 23(1-2), pp. 33–48 (2008)Google Scholar
  18. 18.
    Rutgersson, A., Smedman, A.: Enhanced air–sea CO2 transfer due to water-side convection. Journal of Marine Systems 80(1-20), 125–134 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Juan F. De Paz
    • 1
  • Belén Pérez
    • 1
  • Angélica González
    • 1
  • Emilio Corchado
    • 1
  • Juan M. Corchado
    • 1
  1. 1.Departamento Informática y AutomáticaUniversidad de SalamancaSalamancaSpain

Personalised recommendations