Maintaining Connectivity in Sensor Networks Using Directional Antennae

Part of the Monographs in Theoretical Computer Science. An EATCS Series book series (EATCS)


Connectivity in wireless sensor networks may be established using either omnidirectional or directional antennae. The former radiate power uniformly in all directions while the latter emit greater power in a specified direction thus achieving increased transmission range and encountering reduced interference from unwanted sources. Regardless of the type of antenna being used the transmission cost of each antenna is proportional to the coverage area of the antenna. It is of interest to design efficient algorithms that minimize the overall transmission cost while at the same time maintaining network connectivity. Consider a set S of n points in the plane modeling sensors of an ad hoc network. Each sensor is equipped with a fixed number of directional antennae modeled as a circular sector with a given spread (or angle) and range (or radius). Construct a network with the sensors as the nodes and with directed edges (u,v) connecting sensors u and v if v lies within u’s sector. We survey recent algorithms and study trade-offs on the maximum angle, sum of angles, maximum range, and the number of antennae per sensor for the problem of establishing strongly connected networks of sensors.


  1. 1.
    M. Abellanas, A. García, F. Hurtado, J. Tejel, and J. Urrutia. Augmenting the connectivity of geometric graphs. Computational Geometry: Theory and Applications, 40(3):220–230, 2008.MATHMathSciNetGoogle Scholar
  2. 2.
    S. Arora and K. Chang. Approximation Schemes for Degree-Restricted MST and Red–Blue Separation Problems. Algorithmica, 40(3):189–210, 2004.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    L. Bao and J. J. Garcia-Luna-Aceves. Transmission scheduling in ad hoc networks with directional antennas. Proceedings of the 8th Annual International Conference on Mobile Computing and Networking, pages 48–58, Atlanta, Georgia, USA, 2002.Google Scholar
  4. 4.
    B. Bhattacharya, Y Hu, E. Kranakis, D. Krizanc, and Q. Shi. Sensor Network Connectivity with Multiple Directional Antennae of a Given Angular Sum. 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2009), May 25–29, Rome, Italy, 2009.Google Scholar
  5. 5.
    I. Caragiannis, C. Kaklamanis, E. Kranakis, D. Krizanc, and A. Wiese. Communication in Wireless Networks with Directional Antennae. In proceedings of 20th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’08), June 14–16, pages 344–351, Munich, Germany, 2008.Google Scholar
  6. 6.
    T. M. Chan. Euclidean bounded-degree spanning tree ratios. Discrete and Computational Geometry, 32(2):177–194, 2004.MATHMathSciNetGoogle Scholar
  7. 7.
    E. Chávez, S. Dobrev, E. Kranakis, J. Opatrny, L. Stacho, and J. Urrutia. Local Construction of Planar Spanners in Unit Disk Graphs with Irregular Transmission Ranges. In LATIN 2006, LNCS, Vol. 3887, pages 286–297, 2006.Google Scholar
  8. 8.
    J. Cheriyan, A. Sebö, and Z. Szigeti. An Improved Approximation Algorithm for Minimum Size 2-Edge Connected Spanning Subgraphs. In Proceedings of the 6th International IPCO Conference on Integer Programming and Combinatorial Optimization, Vol. 1412, pages 126–136. Springer, Berlin, 1998.Google Scholar
  9. 9.
    J. Czyzowicz, S. Dobrev, H. Gonzalez-Aguilar, R. Kralovic, E. Kranakis, J. Opatrny, L. Stacho, and J. Urrutia. Local 7-Coloring for Planar Subgraphs of Unit Disk Graphs. In Theory and Applications of Models of Computation: 5th International Conference, TAMC 2008, Xi’an, China, April 25-29, 2008; Proceedings, vol. 4978, pages 170–181. Springer, Berlin, 2008.Google Scholar
  10. 10.
    S. Dobrev, E. Kranakis, D. Krizanc, O. Morales, J. Opatrny, and L. Stacho. Strong connectivity in sensor networks with given number of directional antennae of bounded angle, 2010. COCOA 2010, to appear.Google Scholar
  11. 11.
    Q. Dong and Y. Bejerano. Building Robust Nomadic Wireless Mesh Networks Using Directional Antennas. In IEEE INFOCOM 2008. The 27th Conference on Computer Communications, pages 1624–1632, Phoenix, AZ, USA, 2008.Google Scholar
  12. 12.
    H. Fleischner. The square of every two-connected graph is Hamiltonian. Journal of Combinatorial Theory, 3:29–34, 1974.CrossRefMathSciNetGoogle Scholar
  13. 13.
    A. Francke and M. Hoffmann. The Euclidean degree-4 minimum spanning tree problem is NP-hard. In Proceedings of the 25th Annual Symposium on Computational Geometry, pages 179–188. ACM, New York, NY, 2009.Google Scholar
  14. 14.
    T. Fukunaga. Graph Orientations with Set Connectivity Requirements. In Proceedings of the 20th International Symposium on Algorithms and Computation, pages 265–274. Springer, LNCS, Honolulu, Hawaii, 2009.Google Scholar
  15. 15.
    M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit problem is NP-complete. SIAM Journal on Computing, 5:704, 1976.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    P. Gupta and P. R. Kumar. The capacity of wireless networks. Information Theory, IEEE Transactions On, 46(2):388–404, 2000.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    L. Hu and D. Evans. Using directional antennas to prevent wormhole attacks. In Network and Distributed System Security Symposium (NDSS), pages 131–141. Internet Society, San Diego, California, USA, 2004.Google Scholar
  18. 18.
    H. Imai, K. Kobara, and K. Morozov. On the possibility of key agreement using variable directional antenna. In Proc. of 1st Joint Workshop on Information Security,(Korea). IEICE, 2006.Google Scholar
  19. 19.
    A. Itai, C.H. Papadimitriou, and J.L. Szwarcfiter. Hamilton paths in grid graphs. SIAM Journal on Computing, 11:676, 1982.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    T. R. Jensen and B. Toft. Graph Coloring Problems. Wiley-Interscience, New York, NY, 1996.Google Scholar
  21. 21.
    S. Khuller, B. Raghavachari, and N. Young. Low degree spanning trees of small weight. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, page 421. ACM, Montreal, Quebec, Canada, 1994.Google Scholar
  22. 22.
    S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning trees and shortest-path trees. Algorithmica, 14(4):305–321, 1995.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    E. Kranakis, D. Krizanc, and J. Urrutia. Coverage and Connectivity in Networks with Directional Sensors. proceedings Euro-Par Conference, Pisa, Italy, August, pages 917–924, Pisa, Italy, 2004.Google Scholar
  24. 24.
    E. Kranakis, D. Krizanc, and E. Williams. Directional versus omnidirectional antennas for energy consumption and k-connectivity of networks of sensors. Proceedings of OPODIS, 3544:357–368, 2004.Google Scholar
  25. 25.
    E. Kranakis, O. Morales, and L. Stacho. On orienting planar sensor networks with bounded stretch factor, 2010. Unpublished manuscript.Google Scholar
  26. 26.
    X. Li, G. Calinescu, P Wan, and Y. Wang. Localized Delaunay Triangulation with Application in Ad Hoc Wireless Networks. IEEE Transactions on Parallel and Distributed Systems, 14:2003, 2003.Google Scholar
  27. 27.
    X. Lu, F. Wicker, P. Lio, and D. Towsley. Security Estimation Model with Directional Antennas. In IEEE Military Communications Conference, 2008. MILCOM 2008, pages 1–6, 2008.Google Scholar
  28. 28.
    C. Monma and S. Suri. Transitions in geometric minimum spanning trees. Discrete and Computational Geometry, 8(1):265–293, 1992.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    C. S. J. A. Nash-Williams. On orientations, connectivity and odd vertex pairings in finite graphs. Canadian Journal of Mathematics, 12:555–567, 1960.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    V. Navda, A. P. Subramanian, K. Dhanasekaran, A. Timm-Giel, and S. Das. Mobisteer: using steerable beam directional antenna for vehicular network access. In ACM MobiSys, 2007.Google Scholar
  31. 31.
    R. G. Parker and R. L. Rardin. Guaranteed performance heuristics for the bottleneck traveling salesman problem. Operations Research Letters, 2(6):269–272, 1984.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    A. P. Punnen. Minmax strongly connected subgraphs with node penalties. Journal of Applied Mathematics and Decision Sciences, 2:107–111, 2005.CrossRefMathSciNetGoogle Scholar
  33. 33.
    R. Ramanathan. On the performance of ad hoc networks with beamforming antennas. Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking & Computing, pages 95–105, Long Beach, CA, USA, 2001.Google Scholar
  34. 34.
    D. Rappaport. Computing simple circuits from a set of line segments is NP-complete. SIAM Journal on Computing, 18(6):1128–1139, 1989.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    N. Robertson, D. Sanders, P. Seymour, and R. Thomas. The four-colour theorem. Journal of Combinatorial Theory Series B, 70(1):2–44, 1997.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    I. Rutter and A. Wolff. Augmenting the connectivity of planar and geometric graphs. Electronic Notes in Discrete Mathematics, 31:53–56, 2008.CrossRefMathSciNetGoogle Scholar
  37. 37.
    A. Spyropoulos and C. S. Raghavendra. Energy efficient communications in ad hoc networks using directional antennas. INFOCOM 2002: Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, New York, NY, USA, 2002.Google Scholar
  38. 38.
    A. Spyropoulos and C. S. Raghavendra. Capacity bounds for ad-hoc networks using directional antennas. ICC’03: IEEE International Conference on Communications, Anchorage, Alaska, USA, 2003.Google Scholar
  39. 39.
    S. Yi, Y. Pei, and S. Kalyanaraman. On the capacity improvement of ad hoc wireless networks using directional antennas. Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking & Computing, pages 108–116, Annapolis, Maryland, USA, 2003.Google Scholar
  40. 40.
    H. Zhang and X. He. On even triangulations of 2-connected embedded graphs. SIAM Journal on Computing, 34(3):683–696, 2005.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Evangelos Kranakis
    • 1
  • Danny Krizanc
    • 2
  • Oscar Morales
    • 3
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada
  2. 2.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations