Multi-Agent Systems: Modeling and Verification Using Hybrid Automata

  • Ammar Mohammed
  • Ulrich Furbach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5919)


Hybrid automata are used as standard means for the specification and analysis of dynamical systems. Many researches have approached them to formally specify reactive Multi-agent systems situated in a physical environment, where the agents react continuously to their environment. The specified systems, in turn, are formally checked with the help of existing hybrid automata verification tools. However, when dealing with multi-agent systems, two problems may be raised. The first problem is a state space problem raised due to the composition process, where the agents have to be parallel composed into an agent capturing all possible behaviors of the multi-agent system prior to the verification phase. The second problem concerns the expressiveness of verification tools when modeling and verifying certain behaviors. Therefore, this paper tackles these problems by showing how multi-agent systems, specified as hybrid automata, can be modeled and verified using constraint logic programming(CLP). In particular, a CLP framework is presented to show how the composition of multi-agent behaviors can be captured dynamically during the verification phase. This can relieve the state space complexity that may occur as a result of the composition process. Additionally, the expressiveness of the CLP model flexibly allows not only to model multi-agent systems, but also to check various properties by means of the reachability analysis. Experiments are promising to show the feasibility of our approach.


Model Check Multiagent System Jump Condition Parallel Composition Reachable State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. In: ICAOS: International Conference on Analysis and Optimization of Systems – Discrete-Event Systems. LNCIS, pp. 331–351. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical Computer Science 126(2), 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Ciarlini, A., Frühwirth, T.: Automatic derivation of meaningful experiments for hybrid systems. In: Proceeding of ACM SIGSIM Conf. on Artificial Intelligence, Simulation, and Planning, AIS 2000 (2000)Google Scholar
  5. 5.
    Delzanno, G., Podelski, A.: Model checking in CLP. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Egerstedt, M.: Behavior Based Robotics Using Hybrid Automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 103–116. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    El Fallah-Seghrouchni, A., Degirmenciyan-Cartault, I., Marc, F.: Framework for Multi-agent Planning Based on Hybrid Automata. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 226–235. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Furbach, U., Murray, J., Schmidsberger, F., Stolzenburg, F.: Hybrid multiagent systems with timed synchronization – specification and model checking. In: Dastani, M.M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 205–220. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Gupta, G., Pontelli, E.: A constraint-based approach for specification and verification of real-time systems. In: Proceedings of IEEE Real-time Symposium, pp. 230–239 (1997)Google Scholar
  11. 11.
    Halbwachs, N., Proy, Y., Raymond, P.: Verification of linear hybrid systems by means of convex approximations. In: LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, p. 223. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Henzinger, T.: The theory of hybrid automata. In: Proceedings of the 11th Annual Symposium on Logic in Computer Science, New Brunswick, NJ, pp. 278–292. IEEE Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  13. 13.
    Henzinger, T., Ho, P.-H., Wong-Toi, H.: A user guide to HyTech. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 41–71. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Henzinger, T., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond HYTECH: Hybrid Systems Analysis Using Interval Numerical Methods. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 130–144. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s Decidable about Hybrid Automata? Journal of Computer and System Sciences 57(1), 94–124 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: The Next Generation. In: IEEE Real-Time Systems Symposium, pp. 56–65 (1995)Google Scholar
  17. 17.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Transactions on Automatic Control 43, 540–554 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hutzler, G., Klaudel, H., Wang, D.Y.: Towards timed automata and multi-agent systems. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 161–172. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Jaffar, J., Lassez, J.: Constraint logic programming. In: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 111–119. ACM, New York (1987)CrossRefGoogle Scholar
  20. 20.
    Jaffar, J., Santosa, A., Voicu, R.: A clp proof method for timed automata. In: IEEE International on Real-Time Systems Symposium, vol. 0, pp. 175–186 (2004)Google Scholar
  21. 21.
    Krzysztof, M.W., Apt, R.: Constraint Logic Programming Using Eclipse. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  22. 22.
    Mohammed, A., Furbach, U.: Modeling multi-agent logistic process system using hybrid automata. In: Ultes-Nitsche, U., Moldt, D., Augusto, J.C. (eds.) MSVVEIS 2008: Proceedings of the 6th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, MSVVEIS-2008, pp. 141–149. INSTICC Press (2008)Google Scholar
  23. 23.
    Mohammed, A., Furbach, U.: From reactive to deliberative multi-agent planning. In: Ultes-Nitsche, U., Moldt, D., Augusto, J.C. (eds.) Proceedings of the 7th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, MSVVEIS 2009, pp. 67–75. INSTICC Press (2009)Google Scholar
  24. 24.
    Mohammed, A., Schwarz, C.: Hieromate: A graphical tool for specification and verification of hierarchical hybrid automata. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS (LNAI), vol. 5803, pp. 695–702. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Mohammed, A., Stolzenburg, F.: Implementing hierarchical hybrid automata using constraint logic programming. In: Schwarz, S. (ed.) Proceedings of 22nd Workshop on (Constraint) Logic Programming, Dresden, pp. 60–71 (2008); University Halle Wittenberg, Institute of Computer Science. Technical Report 2008/08Google Scholar
  26. 26.
    Object Management Group, Inc.: UML Version 2.1.2 (Infrastructure and Superstructure) (November 2007)Google Scholar
  27. 27.
    Urbina, L.: Analysis of hybrid systems in CLP(R). In: Freuder, E.C. (ed.) CP 1996. LNCS (LNAI), vol. 1118, pp. 451–467. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ammar Mohammed
    • 1
  • Ulrich Furbach
    • 1
  1. 1.Artificial Intelligence Research GroupUniversität Koblenz-LandauKoblenz

Personalised recommendations