ICT Diffusion in an Aging Society: A Scenario Analysis

  • Enrico Ferro
  • Brunella Caroleo
  • Marco Cantamessa
  • Maurizio Leo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6228)


The relevance of Information and Communication Technologies (ICTs) is progressively increasing in every aspect of modern life. At the same time, the aging trend most European countries are experiencing, may significantly impact on their absorptive capacity of innovation, which is a key determinant of socioeconomic development, with deep policy implications for both the private and the public sector. The aim of this paper is thus to investigate the relationship between age and technological diffusion. The analysis is performed using the Internet as a case study, combining agent-based simulation with classical statistical analysis. Three different demographic scenarios are considered, representing different geographical areas as well as possible alternative futures. The results obtained show that the age factor and the demographic trends exert a significant influence on both the dynamics and length of the diffusion process.


diffusion of innovation aging policy agent-based simulation ICT governance 


  1. 1.
  2. 2.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: Toward a unified view. MIS Quarterly 27(3), 425–478 (2003)Google Scholar
  3. 3.
    Morgan, L.A., Kunkel, S.: Aging, Society, and the Life Course. Springer, New York (2007)Google Scholar
  4. 4.
    Cockerham, W.C.: This Aging Society. Prentice Hall, New Jersey (1996)Google Scholar
  5. 5.
    Casey, B., Oxley, H., Whitehouse, E.R., Antolín, P., Duval, R., Leibfritz, W.: Policies for an Ageing Society: Recent Measures and Areas for Further Reform. OECD Economics Department Working Papers 369, OECD Economics Department, no. 369 (2003)Google Scholar
  6. 6.
    Anderson, G.F., Hussey, P.S.: Population Aging: A Comparison Among Industrialized Countries. Health Affaire 19(3), 191–203 (2000)CrossRefGoogle Scholar
  7. 7.
    European Commission: ICT & Ageing: Users, Markets and Technologies (2009),
  8. 8.
    European Commission: Seniorwatch 2 - Assessment of the Senior Market for ICT Progress and Developments (2008),
  9. 9.
    Schacht, W.H.: Industrial Competitiveness and Technological Advancement: Debate Over Government Policy. The National Council for Science and the Environment (2000)Google Scholar
  10. 10.
    Rogers, E.M.: Diffusion of Innovations. Free Press, Glencoe (1962)Google Scholar
  11. 11.
    Ferro, E., Helbig, N.C., Gil-Garcia, J.R.: The Digital Divide Metaphor: Understanding Paths to IT Literacy. In: Wimmer, M.A., Scholl, H.J., Grönlund, A. (eds.) EGOV 2007. LNCS, vol. 4656, pp. 265–280. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Selwyn, N.: The information aged: A qualitative study of older adults’ use of information and communications technology. Journal of Aging Studies 18(4), 369–384 (2004)CrossRefGoogle Scholar
  13. 13.
    Ferro, E., Dwivedi, Y.K., Gil-Garcia, J.R., Williams, M.D.: Handbook of Research on Overcoming Digital Divides: Constructing an Equitable and Competitive Information Society. Information Science Reference, IGI Global (2009)Google Scholar
  14. 14.
    Norris, P.: Digital Divide: Civic Engagement, Information Poverty, and the Internet Worldwide. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  15. 15.
    Niehaves, B., Becker, J.: The Age-Divide in E-Government - Data, Interpretations, Theory Fragments. In: Oya, M., Uda, R., Yasunobu, C. (eds.) Towards Sustainable Society on Ubiquitous Networks, vol. 286, pp. 279–287. Springer, Boston (2008)CrossRefGoogle Scholar
  16. 16.
    United Nations, Department of Economic and Social Affairs, Population Division,
  17. 17.
    ARD/ZDF-Onlinestudie, by van Eimeren, B., Frees, B.: Internetverbreitung: Größter Zuwachs bei Silver Surfern. In: Media Perspektiven, S. 332, pp. 330–344 (July 2008)Google Scholar
  18. 18.
    Bass, F.: A new product growth model for consumer durables. Management Science 15(5), 215–227 (1969)CrossRefzbMATHGoogle Scholar
  19. 19.
    Srinivasan, V., Mason, C.H.: Nonlinear Least Squares Estimation of New Product Diffusion Models. Marketing Science 5(2), 169–178 (1986)CrossRefGoogle Scholar
  20. 20.
    Sicherl, P.: Analysis of Information Society Indicators with Time Distance Methodology. Journal of Computing and Information Technology 13(4), 293–298 (2005)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2010

Authors and Affiliations

  • Enrico Ferro
    • 1
  • Brunella Caroleo
    • 2
  • Marco Cantamessa
    • 2
  • Maurizio Leo
    • 2
  1. 1.Istituto Superiore Mario BoellaTechnology to Business Intelligence UnitTorinoItaly
  2. 2.Department of Production Systems and Business EconomicsPolitecnico di TorinoTorinoItaly

Personalised recommendations