Advertisement

Imaging Fast Processes in Liquid Metal Foams and Semi-Solid Alloys Using Synchrotron Radioscopy with Spatio-Temporal Micro-Resolution

  • S. Zabler
  • A. Rack
  • F. García-Moreno
  • A. Ershov
  • T. Baumbach
  • J. Banhart
Chapter

Abstract

New X-ray sources of unmatched brilliance, like the superconducting undulator device at ESRF high-energy beamline ID15A, allow for micro-radioscopic investigations with time-resolution up to the micro-second range. Here we present first results of two recent in situ experiments: the visualization of semi-solid metal flow at an acquisition speed 500 frames/s (fps) and the collapse of pore walls in liquid metallic foams investigated at 40,000 fps. Both applications reveal important qualitative and quantitative facts about the dynamic processes in liquid and/or semi-solid metals which were inaccessible until now because of either the limited spatial and/or the limited time-resolution of conventional X-ray devices. Thus, semi-solid slurry is observed to break into small particle clusters when injected at high speed. The event of cell wall collapse in metal foams is found to take ~1–2 ms time, indicating that the dynamics of this system is inertia controlled.

Keywords

Boron Nitride Metal Foam CMOS Camera European Synchrotron Radiation Facility Liquid Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank T. Martin, C. Jarnias, M. Peele, M. Di Michiel, V. Honkimäki, T. Weitkamp (ESRF), A. Dieterich, L. Körner (Universität Tübingen), D. Haas, A. Cecilia, T. Rack, H. Schade, A. Volker (ANKA), N. Kardjilov, A. Hilger and G. Choinka (Helmholtz-Zentrum Berlin) for support and fruitful discussions. H. Kropf and C. Förster for the metallographic work. W. Tutsch (PCO AG, Germany) and A. Bridges (Photron Inc., USA) enlightened us about CMOS cameras. Our gratitude further goes to M. Klinger, H. Heimbach and H. Riesemeier from the Federal Institute for Material Testing Berlin (BAM, Germany) for constructing and building the semi-solid experimental setup.

References

  1. Boden S, Eckert S, Willers B, Gerbeth G (2008) X-ray radioscopic visualization of the solutal convection during solidification of a Ga-30 Wt Pct in alloy. Metall Trans A 39A:613–623CrossRefGoogle Scholar
  2. Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: Pajdla T, Matas J (eds) Computer vision-ECCV 2004. Lecture notes in computer science, vol 3024. Springer, Berlin, pp 25–36Google Scholar
  3. Bull L (1928) La Cinématographie. Armand Collin, ParisGoogle Scholar
  4. Di Michiel M, Merino JM, Fernandez-Carreiras D, Buslaps T, Honkimäki V, Falus P, Martins T, Svensson O (2005) Fast microtomography using high energy synchrotron radiation. Rev Sci Instrum 76:043702CrossRefGoogle Scholar
  5. Flemings MC (1991) Behavior of metal alloys in the semisolid state. Metall Trans A 22A:957–981Google Scholar
  6. García-Moreno F, Babcsan N, Banhart J (2005) X-ray radioscopy of liquid metalfoams: influence of heating profile, atmosphere and pressure. Colloids Surf A 263(1–3):290–294CrossRefGoogle Scholar
  7. García-Moreno F, Rack A, Helfen L, Baumbach T, Zabler S, Babcsan N, Banhart J, Martin T, Ponchut C, Di Michel M (2008) Fast processes in liquid metal foams investigated by high-speed synchrotron x-ray microradioscopy. Appl Phys Lett 92(13):134104-1–134104-3CrossRefGoogle Scholar
  8. Graeff W, Engelke K (1991) Microradiography and microtomography. In: Ebashi S, Koch M, Rubenstein E (eds) Handbook on synchrotron radiation, vol 4. Elsevier, Swansea, pp 361–405Google Scholar
  9. Horn B, Schunck B (1981) Determining optical flow. Artif Intell 17:185–203CrossRefGoogle Scholar
  10. Hufschmidt M, Modigell M, Petera J (2006) Modelling and simulation of forming processes of metallic suspensions under non-isothermal conditions. J Non-Newton Fluid Mech 134:16–26CrossRefGoogle Scholar
  11. Ilinca F, Hétu J-F, Moisan J-F, Ajersch F (2008) Three-dimensional injection molding simulation of AZ91D semi-solid magnesium alloy. Int J Mater Form 1:3–12CrossRefGoogle Scholar
  12. Inoue T, Takeuchi S, Kawahito S (2005) CMOS active pixel image sensor with in-pixel CDS for high-speed cameras. Proc SPIE 5580:293–300CrossRefGoogle Scholar
  13. Koch A (1994) Lens coupled scintillating screen-CCD X-ray area detector with a high quantum efficiency. Nucl Instrum Methods Phys Res A 348:654–658CrossRefGoogle Scholar
  14. Koster JN, Seidel T, Derebail R (1997) A radioscopic technique to study convective fluid dynamics in opaque liquid metals. J Fluid Mech 343:29–41CrossRefGoogle Scholar
  15. Rack A, García-Moreno F, Betz O, Zabler S, Schmidt C, dos Santos Rolo T, Ershov A, Rack T, Helfen L, Banhart J, Baumbach T (2008) Synchrotron-based radioscopy with spatio-temporal micro-resolution using hard X-rays. In: IEEE nuclear science symposium conference record (NSS ‘08), pp 528–531Google Scholar
  16. Rack A, García Moreno F, Baumbach T, Banhart J (2009) Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams. J Synchrotron Radiat 16:432–434CrossRefGoogle Scholar
  17. Yu CJ, Eifert H, Banhart J, Baumeister J (1998) Metal foaming by a powder metallurgy method: production, properties and applications. Mater Res Innov 2:181–188CrossRefGoogle Scholar
  18. Zabler S, Rack A, Rueda A, Helfen L, Garcia-Moreno F, Banhart J (2009) Direct observation of particle flow in semi-solid alloys by synchrotron X-ray micro-radioscopy. Phys Stat Solid A 207(3):718–723CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  • S. Zabler
    • 1
    • 4
  • A. Rack
    • 2
    • 3
  • F. García-Moreno
    • 4
  • A. Ershov
    • 3
  • T. Baumbach
    • 3
  • J. Banhart
    • 4
  1. 1.Technische Universität Berlin, Institut für WerkstofftechnikBerlinGermany
  2. 2.European Synchrotron Radiation FacilityGrenoble CedexFrance
  3. 3.Forschungszentrum Karlsruhe GmbH-ANKAKarlsruheGermany
  4. 4.Helmholtz-Zentrum Berlin, Institute of Applied MaterialsBerlinGermany

Personalised recommendations