Advertisement

Retrieval of Aerosol Properties

  • Gerrit de Leeuw
  • Stefan Kinne
  • Jean-Francois Léon
  • Jacques Pelon
  • Daniel Rosenfeld
  • Martijn Schaap
  • Pepijn J. Veefkind
  • Ben Veihelmann
  • David M. Winker
  • Wolfgang von Hoyningen-Huene
Chapter
Part of the Physics of Earth and Space Environments book series (EARTH)

Abstract

Atmospheric aerosol is a suspension of liquid and solid particles in air, i.e. the aerosol includes both particles and its surrounding medium; in practice aerosol is usually referred to as the suspended matter, i.e. the particles or the droplets, depending on their aggregation state.

Keywords

Aerosol Optical Depth Cloud Condensation Nucleus Aerosol Optical Thickness Aerosol Model Aerosol Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work described in this Chapter was supported by EU-FP6 projects ACCENT, EUCAARI and GEMS, EU-FP7 projects MEGAPOLI and MACC. We gratefully acknowledge the efforts of many global modelling groups contributing to AeroCom exercises and the support of many remote sensing groups, in particular the AERONET group by providing input on site assessments for data quality and regional representation We thank the ICARE thematic centre for providing an easy access to the MODIS and POLDER data and products used in this paper.

References

  1. Al-Saadi, J., J. Szykman, R.B. Pierce, C. Kittaka, D. Neil, D.A. Chu, L. Remer, L. Gumley, E. Prins, L. Weinstock, C. MacDonald, R. Wayland, F. Dimmick and J. Fishman, 2005, Improving national air quality forecasts with satellite aerosol observations. Bulletin of the American Meteorological Society, 86, 1249–1261.Google Scholar
  2. Ackerman, S.A., K.I. Strabala, W.P. Menzel, R.A. Frey, C.C. Moeller, and L.E. Guclusteringey, 1998, Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 141−157.Google Scholar
  3. Andreae, M.O., and D. Rosenfeld, 2008, Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of could-active aerosols. Earth-Sci Rev, 89, 13–41.Google Scholar
  4. Apituley, A., A. Van Lammeren and H. Russchenberg, 2000, High time resolution cloud measurements with lidar during CLARA. Phys. Chem. Ear., 25, 107–113.Google Scholar
  5. Basist, A., D. Garrett, R. Ferraro, N.C. Grody, and K. Mitchell, 1996, A comparison between visible and Microwave snow cover products derived from satellite observations. J. Appl. Meteor., 35, 163–177.Google Scholar
  6. Bellouin, N., O. Boucher, J. Hayward and M. Reddy, 2005, Global estimate of aerosol direct radiative forcing from satellite measurements, Nature, 438, 1138–1141.Google Scholar
  7. Buchholz, A., 1995, Rayleigh scattering calculations for the terrestrial atmosphere. Applied Optics 34, 2765–2773.Google Scholar
  8. Cairns, B., F. Waquet, K. Knobelspiesse, J. Chowdhary and J.-L Deuzé, 2009, Polarimetric remote sensing of aerosols over land surfaces, In: A.A. Kokhanovsky and G. de Leeuw (editors) Satellite Aerosol Remote Sensing Over Land, Springer, Berlin, 295–323.Google Scholar
  9. Chand, D., R. Wood, T.L. Anderson, S.K. Satheesh, and R.J. Charlson, 2009, Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nature Geoscience, 2, 181–184, doi: 10.1038/NGE0437.Google Scholar
  10. Chu, D.A., Y.J. Kaufman, C. Ichoku, L.A. Remer, D. Tanré, B.N. Holben, 2002, Validation of MODIS aerosol optical thickness retrieval over land. Geophys. Res. Lett., 29, doi: 10.1029/2001GL013205.
  11. Cox, C., and W. Munk, 1954, Measurements of the roughness of the sea surface from photographs of the Sun’s glitter. J. Opt. Soc. Am., 44, 838–850.Google Scholar
  12. Curier R.L., J.P. Veefkind, R. Braak, B. Veihelmann, O. Torres and G. de Leeuw, 2008, Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe. J. Geophys. Res., 113, D17S90, doi:10.1029/2007JD008738.Google Scholar
  13. de Haan J.F., P.B. Bosma, and J.W. Hovenier, 1987, The adding method for multiple scattering calculations of polarized light. Astron. Astrophys., 183, 371–391.Google Scholar
  14. de Leeuw, G., and A. Kokhanovsky, 2009, Introduction, In: A.A. Kokhanovsky and G. de Leeuw (editors) Satellite Aerosol Remote Sensing Over Land, Springer, Berlin, 1–18.Google Scholar
  15. de Leeuw, G., A.N. de Jong, J. Kusmierczyk-Michulec, R. Schoemaker, M. Moerman, P. Fritz, J. Reid and B. Holben, 2005, Aerosol Retrieval Using Transmission and Multispectral AATSR Data, in: J.S. Reid, S.J. Piketh, R. Kahn, R.T. Bruintjes and B.N. Holben (editors) A Summary of First Year Activities of the United Arab Emirates Unified Aerosol Experiment: UAE2. NRL Report Nr. NRL/MR/7534–05-8899, pp 105–110.Google Scholar
  16. Deschamps, P.Y., F.-M. Breon, M. Leroy, A. Podaire, A. Bricaud, J.C. Buriez, and G. Seze, 1994, The POLDER Mission : Instrument characteristics and scientific objectives. IEEE Trans Geosci Remote Sens., 2, 598–615.Google Scholar
  17. Deuzé, J.L., F.-M. Breon, P.Y. Dechamps, C. Devaux, M. Herman, A. Podaire and J.L. Roujean, 1993, Analysis of the POLDER (POLarization and Directionnality of Earth’s Reflectances) Airborne Instrument Observations over Land Surfaces. Remote Sens. Environ., 45, 137–154.Google Scholar
  18. Dinter, T., W. von Hoyningen-Huene, J.P. Burrows, A. Kokhanovsky, E. Bierwirth, M. Wendisch, D. Müller, R. Kahn, and M. Diouri, 2009. Retrieval of aerosol optical thickness for desert conditions using MERIS observations during SAMUM campaign. Tellus 61B (2009), 220–237.Google Scholar
  19. Dubovik, O., A. Smirnov, B.N. Holben, M.D. King, Y.J. Kaufman, T.F. Eck, and I. Slutsker, 2000, Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky-radiance measurements. J. Geophys. Res, 105, 9791–9806.Google Scholar
  20. Dubovik, O., B.N. Holben, T.F. Eck, A. Smirnov, Y.J. Kaufman, M.D. King, D. Tanré and I. Slutsker, 2002, Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci 59, 590–698.Google Scholar
  21. Dubovik O., A. Sinyuk, T. Lapyonok, B.N. Holben, M. Mishchenko, P. Yang, T.F. Eck, H. Volten, O. Munoz, B. Veihelmann, W.J. van der Zande, J.-F. Leon, M. Sorokin and I. Slutsker, 2006, Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619.Google Scholar
  22. Eck, T.F., B.N. Holben, J.S. Reid, O. Dubovik, A. Smirnov, N.T. O’Neill, I. Slutsker, and S. Kinne, 1999, Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosol. J. Geophys. Res., 104, 31 333–31 350.Google Scholar
  23. Engel-Cox, J.A., C.H. Holloman, B.W. Coutant and R.M. Hoff, 2004, Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ., 38, 2495–2509.Google Scholar
  24. Engel-Cox, J.A., R.M. Hoff, R. Rogers, F. Dimmick, A.C. Rush, J.J. Szykman, J. Al-Saadi, D.A. Chu, E.R. Zell, 2006, Integrating lidar and satellite optical depth with ambient monitoring for 3-D dimensional particulate characterisation. Atmos. Environ., 40, 8056–8067.Google Scholar
  25. Fernald, F.G., B.M. Herman and J.A. Reagan, 1972, Determination of aerosol height distributions with lidar. J. Appl. Meteorol., 11, 482–489.Google Scholar
  26. Flowerdew R.J., and J.D. Haigh, 1995, An approximation to improve accuracy in the derivation of surface reflectances from multi-look satellite radiometers. Geophys. Res. Lett., 23, 1693–1696.Google Scholar
  27. Grey, W.M.F., P.R.J. North, S.O. Los and R.M. Mitchell, 2006, Aerosol optical depth and land surface reflectance from multi-angle AATSR measurements: Global validation and inter-sensor comparisons. IEEE Trans. Geosci. Remote Sens., 44, 2184–2197.Google Scholar
  28. Griggs, M., 1975, Measurements of atmospheric aerosol optical thickness over water using ERS-1 data. J. Air Pollut. Conlrol. Assoc., 25, 622–626.Google Scholar
  29. Hasekamp, O.P., and J. Landgraf, 2005, Retrieval of aerosol properties over the ocean from multispectral single-viewing-angle measurements of intensity and polarization: Retrieval approach, information content, and sensitivity study. J. Geophys. Res., 110, D20207, doi: 10.1029/2005JD006212.Google Scholar
  30. Herman M., J.-L. Deuzé, A. Marchand, B. Roger, P. Lallart (2005), Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model, J. Geophys. Res., 110, D10S02, doi:10.1029/2004JD004798.Google Scholar
  31. Hess, M., P. Koepke and I. Schult, 1998, Optical properties of aerosols and clouds : The software package OPAC. Bull. Am. Met. Soc., 79, 831–844.Google Scholar
  32. Höller, R., P. Garnesson, C. Nagl, and T. Holzer-Popp, 2007, Using satellite aerosol products for monitoring national and regional air quality in Austria. Proc. ‘Envisat Symposium 2007’, Montreux, Switzerland, 23–27 April 2007 (ESA SP-636).Google Scholar
  33. Holben, B., T. Eck, I. Slutsker, D. Tanre, J. Buis, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenau, I. Jankowiak and A.Smirnov, 1998, AERONET, a federated instrument network and data-archive for aerosol characterization. Rem. Sens. Environ., 66, 1–66.Google Scholar
  34. Holben, B.N., D. Tanré, A. Smirnov, T.F. Eck, I. Slutsker, N. Abuhassan, W.W. Newcomb, J.S. Schafer, B. Chatenet, F. Lavenu, Y.J. Kaufman, J.V. de Castle, A. Setzer, B. Markham, D. Clark, R. Froin, R. Halthore, A. Karnieli, N.T. O’Neill, C. Pietras, R.T. Pinker, K. Voss and G. Zibordi, 2001, An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res., 106, 12.067–12.097.Google Scholar
  35. Holzer-Popp, T., M. Schroedter and G. Gesell, 2002, Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR-2 radiometer measurements, 1, Method description. J. Geophys. Res., 107, 4578, doi:10.1029/2001JD002013.Google Scholar
  36. Hunt W. H., D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, C. Weimer, 2009, CALIPSO lidar description and performance assessment. J. Atmos. Oceanic Technol., 26, 1214–1228, doi:  10.1175/2008JTECHA1221.1.Google Scholar
  37. Hutchison, K.D., 2003, Applications of MODIS satellite data and products for monitoring air quality in the state of Texas. Atmos. Environ., 37, 2403–2412.Google Scholar
  38. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (editors), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.Google Scholar
  39. Ichoku, C., L.A. Remer and T.F. Eck, 2005, Quantitative evaluation and intercomparison of morning and afternoon Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol measurements from Terra and Aqua. J. Geophys. Res., 110, D10S03, doi:10.1029/2004JD004987.Google Scholar
  40. Kacenelenbogen, M., J.-F. Léon, I. Chiapello, and D. Tanré, 2006, Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data. Atmos. Chem. Phys., 6, 4843–4849.Google Scholar
  41. Kahn, R. A., W.-H. Li, C. Moroney, D. J. Diner, J. V. Martonchik, and E. Fishbein, 2007, Aerosol source plume physical characteristics from space-based multiangle imaging. J. Geophys. Res., 112, D11205, doi: 10.1029/2006JD007647.Google Scholar
  42. Kahn, R.A., D.L. Nelson, M.J. Garay, R.C. Levy, M.A. Bull, D.J. Diner, J.V. Martonchik, S.R. Paradise, E.G. Hansen and L.A. Remer, 2009, MISR Aerosol Product Attributes and Statistical Comparisons With MODIS. IEEE Trans. On Geosc. and Remote Sensing, 47, 4095–4114.Google Scholar
  43. Katsev, I.L., A.S. Prikhach, E.P. Zege, A.P. Ivanov and A.A. Kokhanovsky, 2009, Iterative procedure for retrieval of spectral optical thickness and surface reflectance from satellite data using fast radiative transfer code and its application to MERIS measurements, in: A.A. Kokhanovsky and G. de Leeuw (editors) Satellite Aerosol Remote Sensing Over Land, Springer, Berlin, 101–132.Google Scholar
  44. Kaufman, Y., A. Smirnov, B. Holben and O. Dubovik, 2001, Baseline maritime aerosol: methodology to derive the optical thickness and scattering properties. Geophys. Res. Letters, 28, 3251–3254.Google Scholar
  45. Kaufman, Y.J, D. Tanré and O. Boucher, 2002, A satellite view of aerosols in the climate system. Nature 419, 215–223.Google Scholar
  46. Kinne, S., 2009, Remote Sensing Data Combinations – Superior Global Maps for Aerosol Optical Depth, in: A.A. Kokhanovsky and G. de Leeuw (editors) Satellite Aerosol Remote Sensing Over Land, Springer, Berlin, 361–381.Google Scholar
  47. Kinne, S., M. Schulz, C. Textor, S. Guibert, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, M. Chin, W. Collins, F. Dentener, T. Diehl, R. Easter, J. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, M. Herzog, L. Horowitz, I. Isaksen, T. Iversen, D. Koch, M. Krol, A. Lauer, J.F. Lamarque, G. Lesins, X. Liu, U. Lohmann, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, T. Takemura and X. Tie, An AeroCom initial assessment – optical properties in aerosol component modules of global models. ACP, 6, 1–22, 2006.Google Scholar
  48. Klett, J.D., 1985, Lidar inversion with variable backscatter/extinction ratios. Applied Optics, 24, 1638–1643.Google Scholar
  49. Koepke, P., 1984, Effective reflectance of oceanic whitecaps. Appl. Opt., 23, 1816–1824.Google Scholar
  50. Kokhanovsky, A.A., and G. de Leeuw, 2009, Satellite Aerosol Remote Sensing Over Land. Springer, Berlin.Google Scholar
  51. Kokhanovsky, A.A., F.-M. Breon, A. Cacciari, E. Carboni, D. Diner, W. Di Nicolantonio, R.G. Grainger, W.M.F. Grey, R. Höller, K.-H. Lee, Z. Li, P.R.J. North, A.M. Sayer, G.E. Thomas and W. von Hoyningen-Huene, 2007, Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmospheric Research, 85, 372–394.Google Scholar
  52. Kokhanovsky, A.A., R. L. Curier, Y. Bennouna, R. Schoemaker, G. de Leeuw, P.R.J. North, W. M. F. Grey, K.-H. Lee, 2009, The inter-comparison of AATSR dual view aerosol optical thickness retrievals with results from various algorithms and instruments, Int. J. Remote Sensing, 30: 17, 4525–4537,  10.1080/01431160802578012.Google Scholar
  53. Koren, I., L.A. Remer, Y.J. Kaufman, Y. Rudich and J.V. Martins, 2007, On the twilight zone between clouds and aerosols. Geophys. Res. Lett., 34, L08805, doi: 10.1029/2007GL029253, 2007.Google Scholar
  54. Lee, K. H., Z. Li, Y.J. Kim and A.A. Kokhanovsky, 2009, Aerosol monitoring from satellite observations: a history of three decades. In: Y.J. Kim, U. Platt, M.B. Gu and H. Iwahashi (Editors). Atmospheric and Biological Environmental Monitoring, Berlin: Springer, 13–38.Google Scholar
  55. Lenoble, J., M. Herman, J. Deuzé, B. LaFrance, R. Santer and D. Tanré, 2007, A successive order of scattering code for solving the vector equation of transfer in the Earth’s atmosphere with aerosols. J. Quant. Spectrosc. Radiat. Transf., 1007, 479–507.Google Scholar
  56. Levy, R.C., L.A. Remer and O. Dubovik, 2007a, Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res., 112, D13210, doi: 10.1029/2006JD007815.Google Scholar
  57. Levy, R.C., L.A. Remer, S. Mattoo, E.F. Vermote and Y.J. Kaufman, 2007b, Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res., 112, D13211, doi: 10.1029/2006JD007811.Google Scholar
  58. Liu, L., and M.I. Mishchenko, 2008, Toward unified satellite climatology of aerosol properties: direct comparisons of advanced level 2 aerosol products. J. Quant. Spectrosc. Radiat. Transf., 109, 2376–2385.Google Scholar
  59. Liu Z., M.A. Vaughan, D.M. Winker, C.A. Hostetler, L.R. Poole, D.L. Hlavka, W.D. Hart and M.J. McGill, 2004, Use of Probability Distribution Functions for Discriminating Between Cloud and Aerosol in Lidar Backscatter Data. J. Geophys. Res., 109, doi: 10.1029/2004JD004732.
  60. Liu Z., A.H. Omar, Y. Hu, M.A. Vaughan, D.M. Winker, L.R. Poole and T.A. Kovacs, 2005, CALIOP Algorithm Theoretical Basis Document Part 4: Scene Classification Algorithms. NASA-CNES document PC-SCI-203.Google Scholar
  61. Liu Z., M. Vaughan, D. Winker, C. Kittaka, B. Getzewitch, R. Kuehn, A. Omar, K. Powell, C. Trepte, and C. Hostetler, 2009, The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance, J. Atmos. Oceanic Technol., 26, 1198–1213.Google Scholar
  62. Maignan, F., F.-M. Breòn and R. Lacaze, 2004, Bidirectional reflectance of Earth targets: valuation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot. Remote Sens Environ., 90, 210–220.Google Scholar
  63. McCormick, M.P., P. Hamill, P.J. Pepin, W.P. Chu, T.J. Swissler and L.R. McMaster, 1979, Satellite studies of the Stratospheric aerosol. Bull. American Meteorol. Soc., 60, 1038–1046.Google Scholar
  64. Mekler, Y., H. Quenzel, G. Ohring and I. Marcus, 1977, Relative atmospheric aerosol content from ERS observations. J. Geophys. Res., 82, 967–972.Google Scholar
  65. Mercado, L.M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild and P.M. Cox, 2009, Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017. doi: 10.1038/nature07949 Google Scholar
  66. Mie, G., 1908, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 25, 377–445.Google Scholar
  67. Mishchenko, M.I., I.V. Geogdzhayev, W.B. Rossow, B. Cairns, B.E. Carlson, A.A. Lacis, L. Liu and L.D. Travis, 2007, Long-term satellite record reveals likely recent aerosol trend. Science 315 (5818), 1543. DOI: 10.1126/science.1136709Google Scholar
  68. Myhre, G., F. Stordal, M. Johnsrud, A. Ignatov, M.I. Mishchenko, I.V. Geogdzhayev, D. Tanré, J.L. Deuzé, P. Goloub, T. Nakajima, A. Higurashi, O. Torres and B.N. Holben, 2004, Intercomparison of satellite retrieved aerosol optical depth over ocean. J. Atmos. Sci., 61, 499–513.Google Scholar
  69. Myhre, G., F. Stordal, M. Johnsrud, D.J. Diner, I.V. Geogdzhayev, J.M. Haywood, B.N. Holben, T. Holzer-Popp, A. Ignatov, R.A. Kahn, Y.J. Kaufman, N. Loeb, J.V. Martonchik, M.I. Mishchenko, N.R. Nalli, L.A. Remer, M. Schroedter-Homscheidt, D. Tanré, O. Torres, and M. Wang, 2005, Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000. Atmos. Chem. Phys., 5, 1697–1719.Google Scholar
  70. Nadal, F., and F.-M. Bréon, 1999, Parametrisation of surface polarised reflectance derived from POLDER spaceborne measurements. IEEE Trans. Geosci. Remote Sens., 37, 1709–1718.Google Scholar
  71. North, P.R.J., C. Brockmann, J. Fischer, L. Gomez-Chova, W. Grey, A. Heckel, J. Moreno, R. Preusker and P. Regner, 2008, MERIS/AATSR synergy algorithms for cloud screening, aerosol retrieval and atmospheric correction. in Proc. 2nd MERIS/AATSR User Workshop, ESRIN, Frascati, 22- 26 September 2008. (CD-ROM), ESA Publications Division, European Space Agency, Noordwijk, The Netherlands.Google Scholar
  72. Omar, A.H., J.-G. Won, S.-C. Yoon, O.D. David, M. Winker and M.P. McCormick, 2004, Development of global aerosol models using cluster analysis of AERONET measurements. J. Geophys. Res., 110, D10S14, doi:10.1029/2004JD004874.Google Scholar
  73. Omar A. H., D. M. Winker, C. Kittaka, M. A. Vaughan, Z. Liu, Y. Hu, C. T. Trepte, R. R. Rogers, R. A. Ferrare, K.-P. Lee, R. E. Kuehn, and C. A. Hosteler, 2009, The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 1994–2014, DOI:  10.1175/2008JTECHA1221.1.Google Scholar
  74. Pal, S.R., W. Steinbrecht and A.I. Carswell, 1992, Automated method for lidar determination of cloud-base height and vertical extent. Applied Optics, 31, 1488–1494.Google Scholar
  75. Platt, C.M.R., 1973, Lidar and radiometer observations of cirrus clouds. J. Atmos. Sci., 30, 1191–1204.Google Scholar
  76. Powell K. A., C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young and D. M. Winker, 2009, CALIPSO lidar calibration algorithms Part I: Night-time 532-nm parallel channel and 532-nm perpendicular channel. J. Atmos. Oceanic Technol., 26, 2015–2033, doi: 10.1175/2008JTECHA1221.1.Google Scholar
  77. Quaas J., O. Boucher, N. Bellouin and S. Kinne, 2008, Satellite based estimate of the direct and indirect aerosol climate forcing, J. Geophys. Res., 113, D05204, doi: 10.1029/2007JD008962.Google Scholar
  78. Reagan J. A., X. Wang, and M. J. Osborn, 2002, Spaceborne lidar calibration from cirrus and molecular backscatter returns. IEEE Trans. Geosci. Remote Sens., 40, 2285–2290.Google Scholar
  79. Reid, J.S., S.J. Piketh, R. Kahn, R.T. Bruintjes and B.N. Holben (Editors), 2005, A Summary of First Year Activities of the United Arab Emirates Unified Aerosol Experiment: UAE2. NRL Report Nr. NRL/MR/7534–05-8899.Google Scholar
  80. Remer, L.A., Y.J. Kaufman, D. Tanré, S. Mattoo, D.A. Chu, J.V. Martins, R.R. Li, C. Ichoku, R.C. Levy, R.G. Kleidman, T.F. Eck, E. Vermote and B.N. Holben, 2005, The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.Google Scholar
  81. Robles Gonzalez, C., 2003, Retrieval of Aerosol Properties using ATSR-2 Observations and their Interpretation. PhD thesis, University of Utrecht, Utrecht, The Netherlands.Google Scholar
  82. Robles-Gonzalez, C., J.P. Veefkind and G. de Leeuw, 2000, Mean aerosol optical depth over Europe in August 1997 derived from ATSR-2 data. Geophys. Res. Lett. 27, 955–959.Google Scholar
  83. Robles-Gonzalez, C., G. de Leeuw, R. Decae, J. Kusmierczyk-Michulec, and P. Stammes, 2006, Aerosol properties over the Indian Ocean Experiment (INDOEX) campaign area retrieved from ATSR-2. J. Geophys. Res., 111, D15205, doi: 10.1029/2005JD006184.Google Scholar
  84. Robles-Gonzalez, C., and G. de Leeuw, 2008, Aerosol properties over the SAFARI-2000 area retrieved from ATSR-2. J. Geophys. Res., 113, D05206, doi: 10.1029/2007JD008636.Google Scholar
  85. Rossow, W., A. Walker and C. Garder, 1993, Comparison of ISCCP and other cloud amounts, J. Climate, 6, 2394–2418.Google Scholar
  86. Santer, R., V. Carrere, P. Dubuisson and J.-C. Roger, 1999, Atmospheric corrections over land for MERIS. Int. J. of Rem. Sens., 20, 1819–1840.Google Scholar
  87. Santer, R, Carrere, V., Dessailly, D., Dubuisson, P., and Roger, J.-C., 2000: MERIS Algorithm theoretical basis document, ATBD 2.15, Atmospheric corrections over land.Google Scholar
  88. Schaaf, C., F. Gao, A. Strahler, W. Lucht, X. Li, T. Trang, N. Strucknell, X. Zhang, Y. Jin, J.-P. Mueller, P. Lewis, M. Barnsley, P. Hobson, M. Disney, G. Roberts, M. Dunderdale, R. D’Entremont, B. Hu, S. Liang, J. Privette and D. Roy, 2002, First oberservational BRDF, albedo and nadir reflectance from MODIS. Remote Sens. Environ., 83, 135–148.Google Scholar
  89. Schaap, M., K. Muller and H.M. ten Brink, 2002, Constructing the European aerosol nitrate concentration field from quality analysed data. Atmos. Environ., 36, 1323–1335.Google Scholar
  90. Schaap, M., R.M.A. Timmermans, R.B.A Koelemeijer, G. de Leeuw and P.J.H. Builtjes, 2008, Evaluation of MODIS aerosol optical thickness over Europe using sun photometer observations. Atmos. Environ., 42, 2187–2197, doi: 10.1016/j.atmosenv.2007.11.044.Google Scholar
  91. Schulz M., C. Textor, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, F. Dentener, S. Guibert, I.S.A. Isaksen, T. Iversen, D. Koch, A. Kirkevag, X. Liu, V. Montenaro, G. Myhre, J.E. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier and T. Takemura, 2006, Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. ACP, 6, 5225–5346.Google Scholar
  92. Seinfeld, J.H., and S.N. Pandis, 1998, Atmospheric Chemistry and Physics. Wiley.Google Scholar
  93. Silva, A.M., M.L. Bugalho, M.J. Costa, W.V. Hoyningen-Huene, T. Schmidt, J. Heintzenberg, S. Henning, 2002, Aerosol optical properties from columnar data during the second Aerosol Characterization Experiment an the south coast of Portugal. J. Geophys. Res., 107, doi: 10.1029/2002JD002196.Google Scholar
  94. Smirnov, A., B.N. Holben, I. Slutsker, D. M. Giles, C. R. McClain, T.F. Eck, S.M. Sakerin, A. Macke, P. Croot, G. Zibordi, P.K. Quinn, J. Sciare, S. Kinne, M. Harvey, T.J. Smyth, S. Piketh, T. Zielinski, A. Proshutinsky, J.I. Goes, N.B. Nelson, P. Larouche, V.F. Radionov, P. Goloub, K. Krishna Moorthy, R. Matarrese, E.J. Robertson, and F. Jourdin, 2009, Maritime Aerosol Network as a component of Aerosol Robotic Network. J. Geophys. Res., 114, D06204, doi: 10.1029/2008JD011257.Google Scholar
  95. Sogacheva, L., P. Kolmonen, L. Curier, G. de Leeuw, A. Kokhanovsky, 2009, Combined AATSR/MERIS algorithm AMARA for aerosol optical depth retrieval over ocean. Proceedings of OceanObs’09, 21–25 September 2009, Venice, Italy.Google Scholar
  96. Stammes, P., 2001, Spectral radiance modelling in the UV-Visible range. in: W.L. Smith and Y.M. Timofeyev (editors), Current problems in Atmospheric Radiation, A. Deepak Publication, Hampton, VA, pp. 385–388.Google Scholar
  97. Stowe, L.L., H. Jacobowitz, G. Ohring, K.R. Knapp and N.R. Nalli, 2002, The Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmosphere (PATMOS) climate dataset: Initial analyses and evaluations. J. Clim., 15, 1243–1260.Google Scholar
  98. Thomas, G.E., C.A. Poulsen, R. L. Curier, G. de Leeuw, S. H. Marsh, E. Carboni, R. G. Grainger and R. Siddans, 2007, Comparison of AATSR and SEVIRI aerosol retrievals over the Northern Adriatic. QJRM, 133, 85–95, doi: 10.1002/qj.126.Google Scholar
  99. Torres, O., P.K. Bhartia, J.R. Herman and Z. Ahmad, 1998, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation. Theoretical Basis. J. Geophys. Res., 103, 17099–17110.Google Scholar
  100. Torres, O., P.K. Bhartia, J.R. Herman, A. Sinyuk and B.N. Holben, 2002, A long term record of aerosol optical thickness from TOMS observations and comparison to AERONET measurements. J. Atm. Sci.,59, 398–413.Google Scholar
  101. Torres, O., A. Tanskanen, B. Veihelmann, C. Ahn, R. Braak, P.K. Bhartia, J.P. Veefkind, and P.F. Levelt, 2007, Aerosols and Surface UV Products from OMI Observations: An Overview. J. Geophys. Res., 112, D24S47, doi:10.1029/2007JD008809.Google Scholar
  102. Vaughan M.A., D. M. Winker, and C.A. Hostetler, 2002, SIBYL: a Selective Iterated Boundary Location Algorithm for Finding Cloud and Aerosol Layers in CALIPSO Lidar Data. In: L. R. Bissonnette, G. Roy and G. Vallée (editors), Lidar Remote Sensing in Atmospheric and Earth Sciences, Defence R&D Canada – Valcartier, Québec, Canada, pp. 791–794.Google Scholar
  103. Vaughan M.A., D.M. Winker and K.A. Powell, 2005, CALIOP Algorithm Theoretical Basis Document Part 3: Feature Detection and Layer Properties Algorithms. NASA-CNES document PC-SCI-203.Google Scholar
  104. Vaughan M., K. Powell, R. E. Kuehn, S. Young, D. M. Winker, C. A. Hostetler, W. H. Hunt, Z. Liu, M. J. McGill and B. J. Getzewitch, 2009, Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26, 2034–2050, DOI:  10.1175/2008JTECHA1221.1.Google Scholar
  105. Veefkind, J.P. and G. de Leeuw, 1998, A new algorithm to determine the spectral aerosol optical depth from satellite radiometer measurements. J. of Aerosol Sciences, 29, 1237–1248.Google Scholar
  106. Veefkind, J.P., G. de Leeuw and P.A. Durkee, 1998, Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX. Geophys. Res. Lett. 25, 3135–3138.Google Scholar
  107. Veefkind, J.P., G. de Leeuw, P. Stammes and R.B.A. Koelemeijer, 2000, Regional distribution of aerosol over land derived from ATSR-2 and GOME. Remote sens Environ., 74,377–386.Google Scholar
  108. Veihelmann, B., P.F. Levelt, P. Stammes and J.P. Veefkind, 2007, Aerosol Information Content in OMI Spectral Reflectance Measurements. Atmos. Chem. Phys., 7, 3115–3127.Google Scholar
  109. Vermeulen, A., C. Devaux and M. Herman, 2000, Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarization. I. Method. Appl. Opt., 39, 6207–6220.Google Scholar
  110. Verver, G.H.L., J.S. Henzing, G. de Leeuw, C. Robles Gonzalez and P.F.J. van Velthoven, 2002, Aerosol retrieval and assimilation (ARIA). Final report Phase 1, NUSP-2, 02-09, KNMI-publicatie: 200.Google Scholar
  111. Volten, H., O. Munoz, E. Rol, J.F. de Haan, W. Vassen, J.W. Hovenier, K. Muinonen and T. Nousiainen, 2001, Scattering matrices of mineral aerosol particles at 441.6 and 632.8 nm. J. Geophys. Res., 106, 17375–17401.Google Scholar
  112. von Hoyningen-Huene, W., and P. Posse, 1997, Non-sphericity of aerosol particles and their contribution to radiative forcing. J.Quant. Spectr. Rad. Trans. 57, 651–668.Google Scholar
  113. von Hoyningen-Huene, W., K. Wenzel and S. Schienbein, 1999a, Radiative properties of desert dust and its effect on radiative balance. J. Aeros. Sci., 30, 489–502.Google Scholar
  114. von Hoyningen-Huene, W., T. Schmidt, S. Schienbein, A.K. Chan and J.T. Lim, 1999b, Climate relevant aerosol parameters of South-East Asian forest fire haze. Atm. Env., 33, 3183–3190.Google Scholar
  115. von Hoyningen-Huene, W., M. Freitag and J.B. Burrows, 2003, Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance. J. Geophys. Res., 108, 4260. doi: 10.1029/2001JD002018.Google Scholar
  116. von Hoyningen-Huene, W., A.A. Kokhanovsky, J.B. Burrows, V. Bruniquel-Pinel, P. Regner and F. Baret, 2006, Simultaneous determination of aerosol- and surface characteristics from top-of-atmosphere reflectance using MERIS on board ENVISAT. Adv Space Res., 37, 2172–2177.Google Scholar
  117. von Hoyningen-Huene, W., A.A. Kokhanovsky and J.P. Burrows, 2008, Retrieval of Particulate Matter from MERIS Observations. In: Y.J. Kim and U. Platt, (editors), Advanced Environmental Monitoring. Springer, Berlin, pp. 190–202.Google Scholar
  118. Wang, M., and H.R. Gordon, 1994, Radiance reflected from the ocean-atmosphere system: synthesis from the individual components of the aerosol size distribution. Appl. Opt., 33, 7088–7095.Google Scholar
  119. Wang J. and S.A. Christopher, 2003, Intercomparison between satellite-derived aerosol optical thickness and PM25 mass: implications for air quality studies. Geophys. Res. Lett., 30, 2095, doi:10.1029/2003GL018174.Google Scholar
  120. Winker, D.M., R.H. Couch and M.P. McCormick, 1996, An overview of LITE: NASA’s Lidar In-space Technology Experiment. Proc. IEEE, 84, 164–180.Google Scholar
  121. Winker D.M., J.R. Pelon and M.P. McCormick, 2003, The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds, Proc. of SPIE, 4893, 1–11.Google Scholar
  122. Winker D.M., W.H. Hunt and M.J. McGill, 2007, Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi: 10.1029/2007GL030135.Google Scholar
  123. Winker, D.M., M.A. Vaughan, A.H. Omar, Y. Hu, K.A. Powell, Z. Liu, W.H. Hunt, and S.A. Young, 2009., Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Oceanic Technol., 26, 2310–2323, doi:  10.1175/2008JTECHA1221.1.Google Scholar
  124. Young, S.A., 1995, Lidar analysis of lidar backscatter profiles in optically thin clouds. Appl. Opt., 34, 7019–7031.Google Scholar
  125. Young S.A., D.M. Winker, V. Noel, M.A. Vaughan, Y.Hu, R.E. Kuehn, 2005, Algorithm Theoretical Basis Document Part 5: Extinction Retrieval and Particle Property Algorithms, NASA-CNES document PC-SCI-203.Google Scholar
  126. Young S. and M. Vaughan, 2009, The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder satellite observations (CALIPSO) data: algorithm description. J. Atmos. Oceanic Technol., 26, 1105–1119, DOI:  10.1175/2008JTECHA1221.1.Google Scholar
  127. Zwally, H.J., B. Schutz, W. Abdalati, J. Abshire, C. Bentley, A. Brenner, J. Bufton, J. Dezio, D. Hancock, D. Harding, T. Herring, B. Minster, K. Quinn, S. Palm, J. Spinhirne and R. Thomas, 2002, ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J of Geodynamics 34, 405–445.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gerrit de Leeuw
    • 1
    • 2
    • 3
  • Stefan Kinne
    • 4
  • Jean-Francois Léon
    • 5
  • Jacques Pelon
    • 6
  • Daniel Rosenfeld
    • 7
  • Martijn Schaap
    • 3
  • Pepijn J. Veefkind
    • 8
  • Ben Veihelmann
    • 9
  • David M. Winker
    • 10
  • Wolfgang von Hoyningen-Huene
    • 11
  1. 1.Climate Change UnitFinnish Meteorological InstituteHelsinkiFinland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  3. 3.TNO Environment and GeosciencesUtrechtThe Netherlands
  4. 4.MPI-MeteorologyHamburgGermany
  5. 5.LOALilleFrance
  6. 6.Université Pierre et Marie CurieParisFrance
  7. 7.The Hebrew University of JerusalemJerusalemIsrael
  8. 8.Royal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands
  9. 9.ESA/ESTEC, European Space AgencyNoordwijkThe Netherlands
  10. 10.NASA Langley Research CenterHamptonUSA
  11. 11.Institute of Environmental PhysicsUniversity of BremenBremenGermany

Personalised recommendations