Remote Sensing of Terrestrial Clouds from Space using Backscattering and Thermal Emission Techniques

  • Alexander A. Kokhanovsky
  • Steven Platnick
  • Michael D. King


Clouds play a crucial role in the remote sensing of the troposphere as they frequently obscure the radiation reflected or emitted from the surface. However they can be used to advantage to obtain concentration profile information with techniques such as cloud slicing. Treating clouds correctly is therefore an essential part of any retrieval of tropospheric data. The retrieval of cloud parameters from solar back scatter and thermal infrared radiation provides particular information about clouds. Chapter 5 describes the retrieval of the major cloud parameters and their validation, as well as dealing with modern trends and likely developments.


  1. Ackerman, S., K. Strabala, W. Menzel, R. Frey, C. Moeller, and L. Gumley, 1998, Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 32141–32157.CrossRefGoogle Scholar
  2. Arking, A., and J. D. Childs, 1985, Retrieval of cloud cover parameters from multispectral satellite images, J. Appl. Meteorol., 24, 323–333.Google Scholar
  3. Barker, H. W., 2008, Overlap of fractional cloud for radiation calculations in GCMs: A global analysis using CloudSat and CALIPSO data, J. Geophys. Res., 113, doi:10.1029/2007JD009677.
  4. Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, 2000, Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. II. Cloud thermodynamic phase. J. Geophys. Res., 105, 11781–11792.CrossRefGoogle Scholar
  5. Bréon, F., and P. Goloub, 1998, Cloud droplet effective radius from spaceborne polarization measurements, Geophys. Res. Lett., 25, 1879–1882.CrossRefGoogle Scholar
  6. Brinkman, R. T., 1968, Rotational Raman scattering in planetary atmospheres, Astrophys. J., 15, 1087–1093.CrossRefGoogle Scholar
  7. de Beek, R., M. Vountas, V. V. Rozanov, A. Richter, and J. P. Burrows, 2001, The ring effect in the cloudy atmosphere, Geophys. Res. Lett., 28, 721–724.CrossRefGoogle Scholar
  8. Dessler, A. E., S. P. Palm, and J. D. Spinhirne, 2006, Tropical cloud-top height distributions revealed by the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS), J. Geophys. Res., 111, D12215, doi:10.1029/2005JD006705.CrossRefGoogle Scholar
  9. Goloub, P., M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Sèze, 2000, Cloud thermodynamical phase classification from the POLDER spaceborne instrument, J. Geophys. Res., 105, 14747–14759.CrossRefGoogle Scholar
  10. Grenier, P., J. Blanchet, and R. Muñoz-Alpizar, 2009, Study of polar thin ice clouds and aerosols seen by CloudSat and CALIPSO during midwinter 2007, J. Geophys. Res., 114, D09201, doi:10.1029/2008JD010927.
  11. Grzegorski, M., M. Wenig, U. Platt, P. Stammes, N. Fournier, and T. Wagner, 2006, The Heidelberg iterative cloud retrieval utilities (HICRU) and its application to GOME data, Atmos. Chem. Phys., 6, 4461–4476.CrossRefGoogle Scholar
  12. Haladay, T., and G. Stephens, 2009, Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations, J. Geophys. Res., 114, doi:10.1029/2008JD010675.Google Scholar
  13. Han, Q., W. B. Rossow, and A. Lacis, 1994, Near-global survey of effective droplet radius in liquid water clouds using ISCCP data, J. Climate, 7, 465–497.CrossRefGoogle Scholar
  14. Hanel, R. A., 1961, Determination of cloud altitude from a satellite, J. Geophys. Res., 66, 1300–1300.CrossRefGoogle Scholar
  15. Heidinger, A. K., and G. L. Stephens, 2000, Molecular line absorption in a scattering atmosphere. Part II: Application to remote sensing in O2 A-band, J. Atmos. Sci., 57, 1615–1634.CrossRefGoogle Scholar
  16. Herman, J. R., D. Larko, E. Celarier, and J. Ziemke, 2001, Changes in the Earth’s UV reflectivity from the surface, clouds, and aerosols, J. Geophys. Res., 106, 5353–5368.CrossRefGoogle Scholar
  17. Joiner, J., and P. Bhartia, 1995, The determination of cloud pressures from rotational Raman scattering in satellite backscatter ultraviolet measurements, J. Geophys. Res., 100, 23019–23026.CrossRefGoogle Scholar
  18. Joiner, J., and A. P. Vasilkov, 2006, First results from the OMI rotational Raman scattering cloud pressure algorithm, IEEE Trans. Geosci. Remote Sens., 44, 1272–1282.CrossRefGoogle Scholar
  19. King, M. D., 1987, Determination of the scaled optical thickness of clouds from reflected solar radiation measurements. J. Atmos. Sci., 44, 1734–1751.CrossRefGoogle Scholar
  20. King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou, 2004, Remote sensing of liquid water and ice cloud optical thickness, and effective radius in the arctic: Application of airborne multispectral MAS data. J. Atmos. Oceanic Technol., 21, 857–875.CrossRefGoogle Scholar
  21. Koelemeijer, R. B. A., P. Stammes, J. W. Hovenier, and J. F. de Haan, 2001, A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment, J. Geophys. Res., 106, 3475–3490.CrossRefGoogle Scholar
  22. Knap, W. H., P. Stammes, R. B. A. Koelemeijer, 2002, Cloud thermodynamic-phase determination from near-infrared spectra of reflected sunlight. J. Atmos. Sci., 59, 83–96.CrossRefGoogle Scholar
  23. Kokhanovsky A. A., V. V. Rozanov, E. P. Zege, H. Bovensmann, and J. P. Burrows, 2003, A semianalytical cloud retrieval algorithm using backscattered radiation in 0.4–2.4 μm spectral region, J. Geophys. Res., 108, doi:10.1029/2001JD001543.
  24. Kokhanovsky, A. A., 2006, Cloud Optics, Dordrecht: Springer.CrossRefGoogle Scholar
  25. Kokhanovsky, A. A., O. Jourdan, and J. P. Burrows, 2006, The cloud phase discrimination from a satellite, IEEE Geosci. Rem. Sens. Lett., 3, 103–106.CrossRefGoogle Scholar
  26. Kokhanovsky, A. A., M. Vountas, V. V. Rozanov, W. Lotz, H. Bovensmann, and J. P. Burrows, 2007, Global cloud top height and thermodynamic phase distribution as obtained by SCIAMACHY on ENVISAT, Int. J. Remote Sensing, 28, 4499–4507.CrossRefGoogle Scholar
  27. Kokhanovsky, A. A., C. M. Naud, and A. Devasthale, 2008, Inter-comparison of ground-based radar and satellite cloud-top height retrievals for overcast single-layered cloud fields, IEEE Trans. Geosci. Rem. Sens., 47, 1901–1908.CrossRefGoogle Scholar
  28. Kuze, A., and K. V. Chance, 1994, Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands, J. Geophys. Res., 99, 14,481–14,491.Google Scholar
  29. Liou, K.-N., 2002, Introduction to Atmospheric Radiation, New York: Academic Press.Google Scholar
  30. Loyola, D.G. R., 2004, Automatic cloud analysis from polar-orbiting satellites using neural network and data fusion techniques, Proc. Geosci. Remote Sens. Symp., 4, 2530–2533.Google Scholar
  31. Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009, A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data, J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.
  32. Menzel, W. P., R. A. Frey, H. Zhang, D. P. Wylie, C. C. Moeller, R. E. Holz, B. Maddux, B. A. Baum, K. I. Strabala, and L. E. Gumley, 2008, MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47, 1175–1198.CrossRefGoogle Scholar
  33. Moroney, C., R. Davies, and J.-P. Muller, 2002, Operational retrieval of cloud-top heights using MISR data, IEEE Trans. Geosci. Remote Sens., 40, 1532–1546.CrossRefGoogle Scholar
  34. Nakajima, T., and M. D. King, 1990, Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part 1. Theory, J. Atmos. Sci., 47, 1878–1893.CrossRefGoogle Scholar
  35. Nakajima, T., M. D. King, J. D. Spinhirne, and L. F. Radke, 1991, Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part 2. Marine stratocumulus observations, J. Atmos. Sci., 48, 782–850.CrossRefGoogle Scholar
  36. Ou, S.C., K. N. Liou, Y. Takano, and R. L. Slonaker, 2005, Remote sensing of cirrus cloud particle size and optical depth using polarimetric sensor measurements. J. Atmos. Sci., 62, 4371–4383.CrossRefGoogle Scholar
  37. Park H., D. F. Heath, and C. L. Mateer, 1986, Possible application of the Fraunhofer line filling in effect to cloud height measurements, in Meteorological Optics, OSA Technical Digest Series, pp. 70–81, Opt. Soc. Am., Washington, D.C.Google Scholar
  38. Pilewskie, P., and S. Twomey, 1987, Discrimination of ice from water in clouds by optical remote sensing. Atmos. Res., 21, 113–122.CrossRefGoogle Scholar
  39. Platnick, S., J. Y. Li, M. D. King, H. Gerber, and P. V. Hobbs, 2001, A solar reflectance method for retrieving the optical thickness and droplet size of liquid water clouds over snow and ice surfaces, J. Geophys. Res., 106, 15185–15199.CrossRefGoogle Scholar
  40. Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003, The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459–473.CrossRefGoogle Scholar
  41. Price, M. J., 1977, On probing the outer planets with the Raman effect, Rev. Geophys., 15, 227–234.CrossRefGoogle Scholar
  42. Rolland, P., K. N. Liou, M. D. King, S. C. Tsay, and G. M. McFarquhar, 2000, Remote sensing of optical and microphysical properties of cirrus clouds using MODIS channels: methodology and sensitivity to assumptions. J. Geophys. Res., 105, 11,721–11,738.Google Scholar
  43. Rossow, W. B., and R. A. Schiffer, 1999, Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2287.CrossRefGoogle Scholar
  44. Rozanov, V. V., and A. A. Kokhanovsky, 2004, The semi-analytical cloud retrieval algorithm as applied to the cloud top altitude and the cloud geometrical thickness determination from the top of atmosphere reflectance measurements in the oxygen absorption bands, J. Geophys. Res., 109, doi:10.1029/2003JD004104.
  45. Rozanov, V. V., Kokhanovsky, A. A., D. Loyola, R. Siddans, B. Latter, A. Stevens, and J. P. Burrows, 2006, Intercomparison of cloud top altitudes as derived using GOME and ATSR-2 instruments onboard ERS-2, Rem. Sens. Environ., 102, 186–193.CrossRefGoogle Scholar
  46. Rozanov V. V. and A. A. Kokhanovsky, 2008, Impact of single- and multi-layered cloudiness on ozone vertical column retrievals using nadir observations of backscattered solar radiation, in: Light scattering reviews, (ed. A. A. Kokhanovsky, vol.3), Berlin: Springer-Praxis, 113–190.Google Scholar
  47. Rozenberg, G. V., M. S. Malkevitch, V. S. Malkova, and V. I. Syachinov, 1978, The determination of optical characteristics of clouds from measurements of the reflected solar radiation using data from the Sputnik “KOSMOS-320”, Izvestiya Acad. Sci. USSR, Phys. Atmos. Okeana, 10, 14–24.Google Scholar
  48. Saiedy, F., Hilleary, D. T., and Morgan, W. A., 1965, Cloud-top altitude measurements from satellites, Appl. Optics, 4, 495–500.CrossRefGoogle Scholar
  49. Saiedy, F. H., H. Jacobowitz, and D.Q. Wark, 1967, On cloud – top determination from Gemini-5, J. Atmos. Sci., 24, 63–69.CrossRefGoogle Scholar
  50. Sassen, K., Z. Wang, and D. Liu, 2008, Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements, J. Geophys. Res., 113, doi:10.1029/2008JD009972.Google Scholar
  51. Schreiner, A.J., D. A. Unger, W. P. Menzel, G. P. Ellrod, K. I. Strabala, and J. L. Pellet, 1993, A comparison of ground and satellite observations of cloud cover, Bull. Amer. Meteor. Soc., 74, 1851–1861.CrossRefGoogle Scholar
  52. Stephens, G. L., D. G. Vane, S. Tanelli, E. Im, S. Durden, M. Rokey, D. Reinke, P. Partain, G. G. Mace, R. Austin, T. L’Ecuyer, J. Haynes, M. Lebsock, K. Suzuki, D. Waliser, D. Wu, J. Kay, A. Gettelman, Z. Wang, and R. Marchand, 2008, CloudSat mission: Performance and early science after the first year of operation, J. Geophys. Res., 113, doi:10.1029/2008JD009982.
  53. Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994, Cloud properties inferred from 8–12-μm data. J. Appl. Meteor., 33, 212–229.CrossRefGoogle Scholar
  54. Twomey, S., and T. Cocks, 1989, Remote sensing of cloud parameters from spectra1 reflectance in the near-infrared, Contrib. Atmos. Phys., 62, 172–179.Google Scholar
  55. van Deelen, R., 2007, Rotational Raman scattering in The Earth's atmosphere, PhD thesis, Free University of Amsterdam.Google Scholar
  56. van Diedenhoven, B., 2007, Satellite Remote Sensing of Cloud Properties in Support of Trace Gas Retrievals, Ph.D. thesis, Free University, Amsterdam.Google Scholar
  57. van Diedenhoven, B., O. P. Hasekamp and J. Landgraf, 2007, Retrieval of cloud parameters from satellite-based reflectance measurements in the ultraviolet and the oxygen A-band, J. Geophys. Res., 112, D15208, doi:10.1029/2006JD008155.CrossRefGoogle Scholar
  58. Wallace, L., 1972, Rayleigh and Raman scattering by H2 in a planetary atmosphere, Astrophys. J., 176, 249–257.CrossRefGoogle Scholar
  59. Wang, L., and A. E. Dessler, 2006, Instantaneous cloud overlap statistics in the tropical area revealed by ICESat/GLAS data, Geophys. Res. Lett., 33, L15804, doi:10.1029/2005GL024350, 2006.CrossRefGoogle Scholar
  60. Winker D. M. and L. R. Poole, 1995, Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARS, Appl. Phys. B , 60, 341–344.CrossRefGoogle Scholar
  61. Winker, D. M., Couch, R. H., and M. P. McCormick, 1996, An overview of LITE: NASA's Lidar In-space Technology Experiment, Proc. IEEE, 84, 164–180.CrossRefGoogle Scholar
  62. Wu, D. L., S. A. Ackerman, R. Davies, D. J. Diner, M. J. Garay, B. H. Kahn, B. C. Maddux, C. M. Moroney, G. L. Stephens, J. P. Veefkind, and M. A. Vaughan, 2009, Vertical distributions and relationships of cloud occurrence frequency as observed by MISR, AIRS, MODIS, OMI, CALIPSO, and CloudSat, Geophys. Res. Lett., 36, doi:10.1029/2009GL037464.
  63. Wylie, D., D. L. Jackson, W. P. Menzel, and J. J. Bates, 2005, Trends in global cloud cover in two decades of HIRS observations, J. Climate, 18, 3021–3031.CrossRefGoogle Scholar
  64. Yamamoto, G., and D. Q. Wark, 1961, Discussion of the letter by R. A. Hanel, “Determination of cloud altitude from a satellite”, J. Geophys. Res., 66, 3596–3596.CrossRefGoogle Scholar
  65. Zege, E. P., I. L. Katsev, and I. N. Polonsky, 1995, Analytical solution to LIDAR return signals from clouds with regard to multiple scattering, Appl. Phys. B, 60, 345–353.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexander A. Kokhanovsky
    • 1
  • Steven Platnick
    • 2
  • Michael D. King
    • 3
  1. 1.Institute of Environmental PhysicsUniversity of BremenBremenGermany
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA

Personalised recommendations