On Topological Classification of Morse–Smale Diffeomorphisms

Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 2)

Abstract

Well-known results on topological classification of Morse–Smale flows were obtained by Leontovich and Maier (Dokl Akad Nauk 103(4):557–560, 1955) for flows on the two dimensional sphere, and by Mauricio Peixoto (Ann Math 69:199–222, 1959; On a classification of flows on 2-manifolds. Proc. Symp. Dyn. Syst. Salvador 389–492, 1973) for flows on any closed surfaces. Since 1980s rather great progress was achieved in classification of Morse–Smale diffeomorphisms on surfaces. For such diffeomorphisms with finite number heteroclinic orbits there is complete invariant in the form of a graph (similar to that introduced by Peixoto for flows). This graph is defined by taking into account the heteroclinic intersections and it is equipped with a graph automorphism induced by the given diffeomorphism (see for example the surveys (Bonatti et al. Comput Appl Math 20(1–2):11–50, 2001; Grines J Dyn Control Syst 6(1):97–126, 2000) for references and details). Describing of Morse–Smale diffeomorphisms with infinite set of heterolinic orbits uses Markov chains endowed by additional information (see Bonatti et al. Comput Appl Math 20(1–2):11–50, 2001). A progress in dimension 3 is based on rather recent results on finding new topological knot and link invariants which describe (possibly, wild) embedding of invariant manifolds of saddle periodic points into the ambient manifold. These invariants allowed to discover a principal distinctive phenomenon of Morse–Smale diffeomorphisms in dimension 3: the existence of a countable set of non-conjugate Morse–Smale diffeomorphisms with isomorphic Peixoto graphs.140pt]The first author “Viacheslav Grines" has been considered as corresponding author. Please check. The main goal of the present survey is to give an exposition of recent results on classification of Morse–Smale diffeomorphis on 3-manifolds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andronov, A., Pontrjagin, L.: Rough systems. Dokl. Akad. Nauk. 14, 247–250 (1937)Google Scholar
  2. 2.
    Anosov, D.V.: Structurally stable systems. Tr. Mat. Inst. im. V.A. Steklova Akad. Nauk SSSR 169, 59–93(1985); Engl. transl. Proc. Steklov Inst. Math. 169, 61–95 (1985)Google Scholar
  3. 3.
    Aranson, S., Grines, V.: Topological classification of cascades on closed two-dimensional manifolds. Usp. Mat. Nauk. 45(4), 3–32 (1990). Engl. transl. in: Russ. Math. Surv. 45(1) (1990), 1–35MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Aranson, S., Grines, V.: Cascades on surfaces. Dynamical Systems-9. VINITI. Moscow. (1991), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 66, 148–187; Engl. transl. Dynamical Systems IX (Springer, Berlin, 1995), Encycl. Math. Sci. 66, 141–175Google Scholar
  5. 5.
    Arnold, V.: Small denominators I. Mapping of the circle onto itself. Izvestia AN SSSR, ser. matem. 25, 21–86(1961) (Russian); MR 25#4113Google Scholar
  6. 6.
    Artin, E., Fox, R.H.: Some wild cells and spheres in three-dimensional space. Ann. Math. 49, 979–990 (1948)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bezdenezhnykh, A., Grines, V.: Diffeomorphisms with orientable heteroclinic sets on two-dimensional manifolds. (Russian) In: Qualitative Methods of the Theory of Differential Equations, pp. 139–152. Gorky (1985)Google Scholar
  8. 8.
    Bezdenezhnykh, A., Grines, V.: Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. Part 1. Sel. Math. Sov. 11(1), 1–11 (1992a)Google Scholar
  9. 9.
    Bezdenezhnykh, A., Grines, V.: Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. Part 2. Sel. Math. Sov. 11(1), 13–17 (1992b)Google Scholar
  10. 10.
    Bezdenezhnykh, A., Grines, V.: Realization of gradient-like diffeomorphisms of two-dimensional manifolds. Sel. Math. Sov. 11(1), 19–23 (1992c)MathSciNetGoogle Scholar
  11. 11.
    Bonatti, Ch., Grines, V.: Knots as topological invariant for gradient-like diffeomorphisms of the sphere S 3. J. Dyn. Control Syst. 6, 579–602 (2000)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Bonatti, Ch., Grines, V., Langevin, R.: Dynamical sytems in dimension 2 and 3: conjugacy invariants and classication. Comput. Appl. Math. 20(1–2), 11–50 (2001a)MathSciNetMATHGoogle Scholar
  13. 13.
    Bonatti, Ch., Grines, V., Medvedev, V., Pecou, E.: On topological classification of gradient-like diffeomorphisms without heteroclinic curves on 3-manifolds. Dokl. RAN. 377(2), 151–155 (2001b)MathSciNetGoogle Scholar
  14. 14.
    Bonatti, Ch., Grines, V., Pecou, E.: Two-dimensional links and diffeomorphisms on 3-manifolds. Ergod. Theory Dyn. Syst. 22(3), 687–710 (2002a)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Bonatti, Ch., Grines, V., Medvedev, V., Pecou, E.: Three-manifolds admitting Morse-Smale diffeomorphisms without heteroclinic curves. Topol. Appl. 117, 335–344 (2002b)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Bonatti, Ch., Grines, V., Medvedev, V., Pecou, E.: Topological classification of gradient-like diffeomorphisms on 3-manifolds. Topology 43, 369–391 (2004)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Bonatti, Ch., Grines, V., Pochinka, O.: Classification of the simplest non gradient-like diffeomorphisms on three-manifolds. Contemporary mathematics and its applications. Institute of Cybernetics of Academy of Science of Georgia. 7, 43–71 (2003). Transl. in J. Math. Sci. (N. Y.) 126(4), 1267–1296 (2005)Google Scholar
  18. 18.
    Bonatti, Ch., Grines, V., Pochinka, O.: Classification of Morse-Smale diffeomorphisms with a finite set of heteroclinic orbits on 3-manifolds. (Russian) Dokl. Akad. Nauk. 396(4), 439–442 (2004)Google Scholar
  19. 19.
    Bonatti, Ch., Grines, V., Pochinka, O.: Classification of Morse-Smale diffeomorphisms with finite number heteroclinic orbits on 3-manifolds. Trudy MIAN 250, 5–53 (2005)MathSciNetGoogle Scholar
  20. 20.
    Bonatti, Ch., Grines, V., Pochinka, O.: On Existence of a Smooth Arc Joining “North Pole-South Pole” Diffeomorphisms. Prepubl. Inst. Math. Bourgogne. http://math.u-bourgogne.fr/topologie/prepub/bifs4.pdf (2006)Google Scholar
  21. 21.
    Bonatti, Ch., Grines, V., Pochinka, O.: Classification of Morse-Smale diffeomorphisms with the chain of saddles on 3-manifolds. Foliations 2005, pp. 121–147. World Scientific, Singapore, (2006)Google Scholar
  22. 22.
    Bonatti, Ch., Grines, V., Medvedev, V., Pochinka, O.: Bifurcations of Morse-Smale diffeomorphisms with wildly embedded separatrices. Trudy MIAN 256, 54–69 (2007)MathSciNetGoogle Scholar
  23. 23.
    Bonatti, C., Langevin, R.: Difféomorphismes de Smale des surfaces. Astérisque 250, Société mathématique de France (1998)Google Scholar
  24. 24.
    Cantrell, J.: n-frames in Euclidean k-space. Proc. Am. Math. Soc. 15(4), 574–578 (1964)MathSciNetMATHGoogle Scholar
  25. 25.
    Cerf, J.: Sur les diffeomorphismes de la sphere de dimension trois (Γ 4 = 0). Lecture Notes in Math., vol. 53. Springer, Berlin (1968)Google Scholar
  26. 26.
    Conley, C.: Isolated invariant sets and morse index. CBMS Regional Conference Series in Math., vol.38. AMS, Providence, RI (1978)Google Scholar
  27. 27.
    Daverman, R., Venema, G.: Embeddings in Manifolds. Graduate studies in Mathematics, vol. 106. AMS, Providence, RI (2009)Google Scholar
  28. 28.
    Debrunner, H., Fox, R.: A mildly wild imbedding of an n-frame. Duke Math. J. 27, 425–429 (1960)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Franks, J.: Nonsingular Smale flow on S 3. Topology 24(3), 265–282 (1985)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Grines, V.: Topological classification of Morse-Smale diffeomorphisms with a finite set of heteroclinic trajectories on surfaces. Math. Zametki. 54(3), 3–17 (1993)MathSciNetGoogle Scholar
  31. 31.
    Grines, V.: On topological classification of A-diffeomorphisms of surfaces. J. Dyn. Control Syst. 6(1), 97–126 (2000)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Grines, V., Gurevich, E.: About Morse-Smale diffeomorphisms on manifolds of dimention greater then three. Dokl. Akad. Nauk. 416(1), 15–17 (2007)MathSciNetGoogle Scholar
  33. 33.
    Grines, V., Gurevich, E., Medvedev, V.: Peixoto’s graph for Morse-Smale diffeomorphisms on manifolds of dimensions greater than 3. Trudy MIAN 261, 61–86 (2008a)MathSciNetGoogle Scholar
  34. 34.
    Grines, V., Laudenbach, F., Pochinka, O.: An energy function for gradient-like diffeomorphisms on 3-manifolds. (Russian) Dokl. Akad. Nauk. 422(3), 299–301 (2008b)Google Scholar
  35. 35.
    Grines, V., Laudenbach, F., Pochinka, O.: Self-indexing energy function for Morse-Smale diffeomorphisms on 3-manifolds. It will appear in Mosc. Math. J. 9(4) (2009)Google Scholar
  36. 36.
    Grines, V. and Medvedev, V., Zhuzhoma, E.: New relation for Morse-Smale systems with trivially embedded one-dimensional separatrices. Sb. Math. 194, 979–1007 (2003)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Katok, A., Hasselblatt, B.: A First Course in Dynamics. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  38. 38.
    Keldysh, L.: Topological embeddings in euclidean space. Proceedings of Math. Inst. V. A. Steklova., vol. 81. Nauka, Moscow (1966)Google Scholar
  39. 39.
    Langevin, R.: Quelques nouveaux invariants des difféomorphismes de Morse-Smale d’une surface. Ann. Inst. Fourier, Grenoble. 43, 265–278 (1993)Google Scholar
  40. 40.
    Leontovich, E.A., Maier, A.G.: On a scheme determining topological structure of splitting on trajectories. Dokl. Akad. Nauk. 103(4), 557–560 (1955)Google Scholar
  41. 41.
    Maier, A.G.: Rough map of circle to circle. Uch. Zap. GGU. Gorky. Izd-vo GGU. 12, 215–229 (1939)Google Scholar
  42. 42.
    Matsumoto, S.: There are two isotopic Morse-Smale diffeomorphism which can not be joined by simple arcs. Invent. Math. 51, 1–7 (1979)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Mazur, B.: Note on some contractible 4-manifolds. Ann. Math. Second Ser. 73(1), 221–228 (1961)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Milnor, J.: On manifolds homeomorphic to 7-sphere. Ann. Math. 64(2), 399–405 (1956)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Newhouse, S., Peixoto, M.: There is a simple arc joining any two Morse-Smale flows. Asterisque 31, 15–41 (1976)MathSciNetGoogle Scholar
  46. 46.
    Nielsen, J.: Die Structure periodischer Transformation von Flachen. Det. Kgl. Dansk Videnskaternes Selskab. Math.-Phys. Meddelerser. 15 (1937)Google Scholar
  47. 47.
    Nielsen, J.: Surface transformation classes of algebraically finite type. Det. Kgl. Dansk Videnskaternes Selskab. Math.- Phys. Meddelerser 21, 1–89 (1944)Google Scholar
  48. 48.
    Nitecki, Z.: Differentiable dynamics. MIT, Cambridge (1971)MATHGoogle Scholar
  49. 49.
    Palis, J.: On Morse-Smale dynamical systems. Topology 8(4), 385–404 (1969)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Palis, J., Pugh, C.: Fifty problems in dynamical systems. Lecture Notes in Math. 468 (1975), 345–353.MathSciNetCrossRefGoogle Scholar
  51. 51.
    Peixoto, M.C., Peixoto, M.M.: Structural stability in the plane with enlarged boundary conditions. An. Acad. Brasil. Cienc. 31(2), 135–160 (1958)MathSciNetGoogle Scholar
  52. 52.
    Peixoto, M.M.: On structural stability. Ann. Math. 69, 199–222 (1959)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Peixoto, M.M.: Structural stability on two-dimensional manifolds. Topology 1, 101–120 (1962); A further remark. Topology 2, 179–180 (1963)Google Scholar
  54. 54.
    Peixoto, M.: On a classification of flows on 2-manifolds. Proc. Symp. Dyn. Syst. Salvador. 389–492 (1973)Google Scholar
  55. 55.
    Pixton, D.: Wild unstable manifolds. Topology 16, 167–172 (1977)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Pliss, V.: On roughness of differential equations given on torus. Vestnik LGU. Ser. Math. Mech. 13(3), 15–23 (1960)MathSciNetGoogle Scholar
  57. 57.
    Pochinka, O.: On topological conjugacy of the simplest Morse-Smale diffeomorphisms with a finite number of heteroclinic orbits on S 3. Prog. nonlin. Sci. 1, 338–345 (2002)MathSciNetGoogle Scholar
  58. 58.
    Robinson, C.: Dynamical Systems: stability, symbolic dynamics, and chaos. Studies in Advanced Mathematics, 2nd edn. CRC, Boca Raton, FL (1999)Google Scholar
  59. 59.
    Shub, M.: Morse-Smale diffeomorphism are unipotent on gomology. In: Peixoto, M. (ed.) Dynamical Systems, pp. 489–491. Academic, New York (1973)Google Scholar
  60. 60.
    Smale, S.: Morse inequalities for a dynamical system. Bull. Am. Math. Soc. 66, 43–49 (1960)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Smale S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Takens, F.: Tolerance stability. In: Dynamical Systems. Warwick 1974, pp. 293–304. Springer, Berlin (1975)Google Scholar
  63. 63.
    Thurston, W.: The geometry and topology of three-manifolds. Lecture Notes. Princeton University, Princeton (1976–1980)Google Scholar
  64. 64.
    Wilson, W.: Smoothing derivatives of functions and applications. Trans. Am. Math. Soc. 139, 413–428 (1969)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations