A Theoretical, Multidisciplinary View of Catastrophic Regime Change

  • Juan Gabriel Brida
  • Audrey L. Mayer
  • Christopher McCord
  • Lionello F. Punzo
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 2)


Dynamic regime theory is used in a growing number of disciplines to understand, manage, and predict system behavior. A variety of mathematical models have been developed for seemingly disparate systems, however the similarity of these models suggests that the systems could be approached as a collection of samples. A multidisciplinary meta-analysis of dynamic regime models could yield several benefits. Given the difficulty of replication and experimentation in real-world systems, a collection of dynamic systems across disciplines and scales could serve as much-needed replicates. If endogenous variables behave similarly regardless of the source of exogenous pressures, and of the scale at which the system is define, then general models, rules and coded behaviors can be developed. Furthermore, if the same basic theory regarding system behavior (including rapid regime change) applies across disciplines at multiple spatiotemporal scales, then models developed from these theories may help manage those systems which, at larger scales, cross traditional disciplinary lines. This result would emphasize the need to collaborate across4.5pc]First author considered as corresponding author. Please check. disciplines to study the sustainability of dynamic systems. Here we discuss the mathematical basis for common dynamic regime models, and then describe their application to sociological, ecological, and economic systems, in a scale-explicit manner.


Biomass Migration Phosphorus Dioxide Sewage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alley, R.B., Marotzke, J., Nordhaus, W.D., Overpeck, J.T., Peteet, D.M., Pielke Jr., R.A., Pierrehumbert, R.T., Rhines, P.B., Stocker, T.F., Talley, L.D., Wallace, J.M.: Abrupt climate change. Science 299, 2005–2010 (2003)CrossRefGoogle Scholar
  2. 2.
    Andreae, M.O., Rosenfeld, D., Artaxo, P., Costa, A.A., Frank, G.P., Longo, K.M., Silva-Dias, M.A.F.: Smoking rain clouds over the Amazon. Science 303, 1337–1342 (2004)CrossRefGoogle Scholar
  3. 3.
    Bestelmeyer, B.T., Herric, J.E., Brown, J.R., Trujillo, D.A., Havstad, K.M.: Land management in the American Southwest: A state-and-transition approach to ecosystem complexity. Environ. Manage. 34, 38–51 (2004)CrossRefGoogle Scholar
  4. 4.
    Brida, J.G.: A model of inflation and unemployment with multiple regimes. Intl. Math. Forum 1, 1125–1144 (2006)MathSciNetMATHGoogle Scholar
  5. 5.
    Brida, J.G., Punzo, L.F.: Symbolic time series analysis and dynamic regimes. Struct. Change Econ. Dyn. 14, 159–183 (2003)CrossRefGoogle Scholar
  6. 6.
    Carpenter, S.R.: Regime Shifts in Lake Ecosystems: Pattern and Variation. International Ecology Institute, Oldendorf/Luhe, Germany (2003)Google Scholar
  7. 7.
    Carpenter, S., Walker, B., Anderies, J.M., Abel, N.: From metaphor to measurement: Resilience of what to what? Ecosystems 4, 765–781 (2001)CrossRefGoogle Scholar
  8. 8.
    Chapin III, F.S., Callaghan, T.V., Bergeron, Y., Fukuda, M., Johnstone, J.F., Juday, G., Zimov, S.A.: Global change and the boreal forest: thresholds, shifting states or gradual change? Ambio 33, 361–365 (2004)Google Scholar
  9. 9.
    Clark, P.U., Pisias, N.G., Stocker, T.F., Weaver, A.J.: The role of thermohaline circulation in abrupt climate change. Nature 415, 863–869 (2002)CrossRefGoogle Scholar
  10. 10.
    Day, R.H.: Multi-phase economic dynamics. In: Maruyama, T., Takahashi, W. (eds.) Lecture Notes in Economics and Mathematical Systems, pp. 25–46. Springer, Berlin (1995)Google Scholar
  11. 11.
    Eriksson, E.: Air–Ocean–Icecap interactions in relations to climatic fluctuations and glaciation cycles. Meteor. Mon. 8, 68–92 (1968)Google Scholar
  12. 12.
    Giannini, A., Saravana, R., Chang, P.: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302, 1027–1030 (2003)CrossRefGoogle Scholar
  13. 13.
    Gottman, J.M., Murray, J.D., Swanson, C.C., Tyson, R., Swanson, K.R.: The Mathematics of Marriage: Dynamic Nonlinear Models. MIT, Cambridge, MA (2002)MATHGoogle Scholar
  14. 14.
    Handbook of Computational Economics, vol. 2: Agent-Based Computational Economics. Handbooks in Economics Series, North-Holland, Amsterdam (2006)Google Scholar
  15. 15.
    Higgins, P.A.T., Mastrandrea, M.D., Schneider, S.H.: Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 647–655 (2002)CrossRefGoogle Scholar
  16. 16.
    IPCC (Intergovernmental Panel on Climate Change): Climate Change 2007: The physical science basis. In: Solomon, S., Quin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.) Cambridge University Press, Cambridge, UK and New York, (2007)Google Scholar
  17. 17.
    King, G., Zeng, L.: Improving forecasts of state failure. World Polit. 53, 623–658Google Scholar
  18. 18.
    Kinzig, A.P., Ryan, P., Etienne, M., Allison, H., Elmqvist, T., Walker, B.H.: Resilience and regime shifts: assessing cascading effects. Ecol. Soc. 11, 20 [online] (2006)Google Scholar
  19. 19.
    Kleinen, T., Held, H., Petschel-Held, G.: The potential role of spectral properties in detecting thresholds in the Earth system: application to the thermohaline circulation. Ocean Dyn. 53, 53–63 (2003)CrossRefGoogle Scholar
  20. 20.
    Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston, MA (2003)MATHCrossRefGoogle Scholar
  21. 21.
    Mantua, N.: Methods for detecting regime shifts in large marine ecosystems: a review with approaches applied to North Pacific data. Prog. Oceanogr. 60, 165–182 (2004)CrossRefGoogle Scholar
  22. 22.
    Marchant, R., Hooghiemstra, H.: Rapid environmental change in African and South American tropics around 4000 years before present: review. Earth-Sci. Rev. 66, 217–260 (2004)CrossRefGoogle Scholar
  23. 23.
    Mayer, A.L., Rietkerk, M.: The dynamic regime concept for ecosystem management and restoration. BioScience 54, 1013–1020 (2004)CrossRefGoogle Scholar
  24. 24.
    Mayer, A.L., Kauppi, P.E., Angelstam, P.K., Zhang, Y., Tikka, P.M.: Importing timber, exporting ecological impact. Science 308, 359–360 (2005)CrossRefGoogle Scholar
  25. 25.
    Miller, G., Mangan, J., Pollard, D., Thompson, S., Felzer, B., Magee, J.: Sensitivity of the Australian Monsoon to insolation and vegetation: Implications for human impact on continental moisture balance. Geology 33, 65–68 (2005)CrossRefGoogle Scholar
  26. 26.
    Milnor, J., Thurston, W.: On iterated maps of the interval. Lect. Notes Math. 1342, 465–563 (1988)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Nowak, A., Vallacher, R.R.: Dynamical Social Psychology. Guilford, NY (1998)Google Scholar
  28. 28.
    Nusse, H.E., Yorke, J.A.: The structure of basins of attraction and their trapping regions. Ergod. Theory Dyn. Syst. 17, 463–481 (1997)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Nyström, M., Folke, C., Moberg, F.: Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol. Evol. 15, 413–417 (2000)CrossRefGoogle Scholar
  30. 30.
    Overland, J.E., Percival, D.B., Mofjeld, H.O.: Regime shifts and red noise in the North Pacific. Deep-Sea Res. I Ogeanogr. Res. Pap. 53, 582–588 (2006)Google Scholar
  31. 31.
    Peters, D.P.C., Pielke Sr., R.A., Bestelmeyer, B.T., Allen, C.D., Munson-McGee, S., Havstad, K.M.: Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proc. Natl. Acad. Sci. USA 101, 15130–15135 (2004)CrossRefGoogle Scholar
  32. 32.
    Pierrehumbert, R.T.: Climate change and the tropical Pacific: the sleeping dragon wakes. Proc. Natl. Acad. Sci. USA 97, 1355–1358 (2000)CrossRefGoogle Scholar
  33. 33.
    Poon, L., Campos, J., Ott, E., Grebogi, C.: Wada basin boundaries in chaotic scattter. Int. J. Bifurcat. Chaos. 6, 251–265 (1996)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., Lohmann, G., Marsh, R., Mysak, L.A., Wang, Z., Weaver, A.J.: Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett. 32, L23605 (2005)CrossRefGoogle Scholar
  35. 35.
    Rietkerk, M., Dekker, S.C., de Ruiter, P.C., van de Koppel, J.: Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004)CrossRefGoogle Scholar
  36. 36.
    Rinaldi, S., Gragnani, A.: Love dynamics between secure individuals: a modeling approach. Nonlinear Dyn. Psychol. Life Sci. 2, 283–301 (1998)MATHCrossRefGoogle Scholar
  37. 37.
    Rind, D.: The sun’s role in climate variations. Science 296, 673–677 (2002)CrossRefGoogle Scholar
  38. 38.
    Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B.: Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)CrossRefGoogle Scholar
  39. 39.
    Srinivasu, P.D.N.: Regime shifts in eutrophied lakes: a mathematical study. Ecol. Modell 179, 115–130 (2004)CrossRefGoogle Scholar
  40. 40.
    Sternberg, L.dS.L.: Savanna-forest hysteresis in the tropics. Glob. Ecol. Biogeogr. 10, 369–37 (2001)Google Scholar
  41. 41.
    Stewart, I.: Regime change in meteorology. Nature 422, 571–573 (2003)CrossRefGoogle Scholar
  42. 42.
    Suding, K.N., Gross, K.L., Houseman, G.R.: Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 19, 46–53 (2004)CrossRefGoogle Scholar
  43. 43.
    Tesser, A., Achee, J.: Aggression, love, conformity, and other social psychological catastrophes. In: Vallacher, R.R., Nowak, A. (eds.) Dynamical Systems in Social Psychology, pp. 96–109. Academic, San Diego (1994)Google Scholar
  44. 44.
    Thom, R.: Structural Stability and Morphogenesis: An Outline of a General Theory of Models. Westview, Perseus, New York (1972)Google Scholar
  45. 45.
    van Nes, E.H., Scheffer, M.: Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 86, 1797–1807 (2005)CrossRefGoogle Scholar
  46. 46.
    Venegas, J.G., Winkler, T., Musch, G., Vidal Melo, M.F., Layfield, D., Tgavalekos, N., Fischman, A.J., Callahan, R.J., Bellani, G., Harris, R.S.: Self-Organized Patchiness in Asthma as a Prelude to Catastrophic Shifts. Nature 434, 777–782 (2005)CrossRefGoogle Scholar
  47. 47.
    Walker, B., Holling, C.S., Carpenter, S.R., Kinzig, A.: Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 9, 5 [online] (2004)Google Scholar
  48. 48.
    Weart, S.R.: The Discovery of Global Warming. Harvard University Press, Cambridge, MA (2003)Google Scholar
  49. 49.
    Weigel, D., Murray, C.: The paradox of stability and change in relationships: What does chaos theory offer for the study of romantic relationships? J. Soc. Pers. Relat. 17, 425–449 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Juan Gabriel Brida
    • 1
  • Audrey L. Mayer
    • 2
  • Christopher McCord
    • 3
  • Lionello F. Punzo
    • 4
    • 5
  1. 1.Free University of BolzanoBolzanoItaly
  2. 2.Department of Social Sciences and School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA
  3. 3.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA
  4. 4.Department of EconomicsUniversity of SienaSienaItaly
  5. 5.PPED-INCT, UFRJRio de JaneiroBrazil

Personalised recommendations