On Minimizing the Sum of Sensor Movements for Barrier Coverage of a Line Segment

  • Jurek Czyzowicz
  • Evangelos Kranakis
  • Danny Krizanc
  • Ioannis Lambadaris
  • Lata Narayanan
  • Jaroslav Opatrny
  • Ladislav Stacho
  • Jorge Urrutia
  • Mohammadreza Yazdani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6288)

Abstract

A set of sensors establishes barrier coverage of a given line segment if every point of the segment is within the sensing range of a sensor. Given a line segment I, n mobile sensors in arbitrary initial positions on the line (not necessarily inside I) and the sensing ranges of the sensors, we are interested in finding final positions of sensors which establish a barrier coverage of I so that the sum of the distances traveled by all sensors from initial to final positions is minimized. It is shown that the problem is NP complete even to approximate up to constant factor when the sensors may have different sensing ranges. When the sensors have an identical sensing range we give several efficient algorithms to calculate the final destinations so that the sensors either establish a barrier coverage or maximize the coverage of the segment if complete coverage is not feasible while at the same time the sum of the distances traveled by all sensors is minimized. Some open problems are also mentioned.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for coverage and connectivity in thin strips of finite length. In: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, pp. 75–86 (2007)Google Scholar
  2. 2.
    Bhattacharya, B., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal Movement of Mobile Sensors for Barrier Coverage of a Planar Region. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 103–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Cabello, S., Giannopoulos, P., Knauer, C., Rote, G.: Matching point sets with respect to the Earth Mover’s Distance. Computational Geometry: Theory and Applications 39(2), 118–133 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chen, A., Kumar, S., Lai, T.H.: Designing localized algorithms for barrier coverage. In: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, pp. 63–74 (2007)Google Scholar
  5. 5.
    Cohen, S.: Finding Color and Shape Patterns in Images. PhD Thesis, Stanford University, Dept. of Computer Science (1999)Google Scholar
  6. 6.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the maximum sensor movement for barrier coverage of a line segment. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 194–212. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan, S., Zadimoghaddam, M.: Minimizing movement. ACM Transactions on Algorithms (TALG) 5(3), 1–30 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. WH Freeman, San Francisco (1979)MATHGoogle Scholar
  9. 9.
    Klein, O., Veltkamp, R.C.: Approximation Algorithms for Computing the Earth Mover’s Distance Under Transformations. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1019–1028. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. Wireless Networks 13(6), 817–834 (2007)CrossRefGoogle Scholar
  11. 11.
    Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Localized sensor self-deployment with coverage guarantee. ACM SIGMOBILE Mobile Computing and Communications Review 12(2), 50–52 (2008)CrossRefGoogle Scholar
  12. 12.
    Yang, S., Li, M., Wu, J.: Scan-based movement-assisted sensor deployment methods in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 18(8), 1108–1121 (2007)CrossRefGoogle Scholar
  13. 13.
    Zou, Y., Chakrabarty, K.: A distributed coverage- and connectivity-centric technique for selecting active nodes in wireless sensor networks. IEEE Trans. Comput. 54(8), 978–991 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Evangelos Kranakis
    • 2
  • Danny Krizanc
    • 3
  • Ioannis Lambadaris
    • 4
  • Lata Narayanan
    • 5
  • Jaroslav Opatrny
    • 5
  • Ladislav Stacho
    • 6
  • Jorge Urrutia
    • 7
  • Mohammadreza Yazdani
    • 4
  1. 1.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA
  4. 4.Department of Systems and Computer EngineeringCarleton UniversityOttawaCanada
  5. 5.Department of Computer ScienceConcordia UniversityMontréalCanada
  6. 6.Department of MathematicsSimon Fraser UniversityBurnabyCanada
  7. 7.Instituto de MatemáticasUniversidad Nacional Autónoma de MéxicoCoyoacán, México, D.F.México

Personalised recommendations