Predicted Impact of Climate Change on Coffee Supply Chains

  • Peter Laderach
  • Mark Lundy
  • Andy Jarvis
  • Julian Ramirez
  • Emiliano Perez Portilla
  • Kathleen Schepp
  • Anton Eitzinger
Conference paper
Part of the Climate Change Management book series (CCM)

Abstract

Global circulation models all forecast that climate change will increase mean temperatures and change precipitation regimes. As a result, traditional coffee growing regions may disappear and new regions may appear. At the same time, demand for high quality, responsibly sourced coffee continues to grow globally. For sustainable sources of coffee, participants in the global coffee supply chain need to know where coffee will grow in the future and how the suitability of these areas will change over time. With this information, the supply chain then needs to develop appropriate site-specific mitigation and adaptation strategies for both the short and the long term, to guarantee coffee supply as well as to support improved livelihoods for rural communities. In this paper, we firstly quantify the impact of climate change on the suitability of land to grow coffee in a case study in Nicaragua and on acidity content of beverage coffee in a case study in the Veracruz Department of Mexico. Secondly, we propose site-specific adaptation strategies and finally identify critical potential impacts of climate change on the overall supply chain and the implications for all actors in the system. We conclude the paper by identifying key directions for future research to seek mitigation and adaptation strategies at both the community and the supply-chain level.

Keywords

Adaptation Climate change Coffee Spatial modelling Supply chains 

References

  1. Atzmanstorfer K, Oberthür T, Läderach P, O’Brien R, Quiñonez GE, Collet L (2006) Probability modeling to reduce decision uncertainty in environmental niche identification and driving factor analysis, CaNaSTA Case Studies. In: Conference and Exhibition on Applied Geoinformatics – AGIT, GeoInformation for Development – gi4dev AgitSPECIAL, Salzburg, Austria, 7 July 2006, p 11Google Scholar
  2. Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244CrossRefGoogle Scholar
  3. Brus DJ, De Gruijter JJ (1997) Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion). Geoderma 80:1–44CrossRefGoogle Scholar
  4. Busby JR (1991) BIOCLIM: a bioclimatic analysis and prediction system. Plant Prot Q 6:8–9Google Scholar
  5. Busuioc A, Chen Z, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magana Rueda V, Mearns LC, Menendez G, Raisanen J, Rinke A, Sarr A, Whetton P, Hewitson B (2007) Regional climate projections. In: Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, pp 847–940Google Scholar
  6. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick R, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakazawa M, Nakamura Y, Overton J McC, Peterson AT, Phillips J, Richardson K, Scachetti-Pereira R, Schapire E, Soberon J, Williams S, Wisz M, Zimmermann E (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  7. Fischer G, Shah M, van Velthuizen H (2002) Climate change and agricultural vulnerability. International Institute for Applied Systems Analysis (IIASA), ViennaGoogle Scholar
  8. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281CrossRefGoogle Scholar
  9. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005a) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965CrossRefGoogle Scholar
  10. Hijmans RJ, Guarino L, Jarvis A, O'Brien R, Mathur P, Bussink C, Cruz M, Barrantes I, Rojas E (2005b) DIVA-GIS Version 5.2, ManualGoogle Scholar
  11. Hiller S, Onduru DD, de Jager A (2009) Sustainable tea production: an assessment of Farmer Field Schools in Kenya, Report 2008–078. LEI Wageningen UR, The Hague, NetherlandsGoogle Scholar
  12. International Coffee Organization (ICO) (2005) Fortalecimiento de la capacidad comercial, financiera, gerencial y empresarial de los pequeños productores y exportadores de café de México y Nicaragua. Informe sobre los avances realizados en el proyecto hasta marzo de 2005. http://dev.ico.org/documents/icc934c.pdf. Accessed 23 Feb 2008
  13. Jarvis A, Rubiano J, Nelson A, Farrow A, Mulligan M (2004) Practical use of SRTM data in the tropics – Comparisons with digital elevation models generated from cartographic data 198. Centro Internacional de Agricultura Tropical (CIAT), Cali, ColombiaGoogle Scholar
  14. Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Hole-filled SRTM for the globe Version 3. CGIAR-CSI SRTM 90m Database. http://srtm.csi.cgiar.org
  15. Jones PG, Thornton PK, Diaz W, Wilkens PW, Jones AL (2002) MarkSim: a computer tool that generates simulated weather data for crop modeling and risk assessment. Centro Internacional de Agricultura Tropical, Cali, ColombiaGoogle Scholar
  16. Laderach P, Oberthür T, Niederhauser N, Usma H, Collet L, Pohlan J (2006a) Café Especial: Factores, dimensiones e interacciones. In: Pohlan J et al (eds) El Cafetal del Futuro: Realidades y Visiones. Shaker Verlag, Aachen, Germany, pp 141–160Google Scholar
  17. Laderach P, Vaast P, Oberthür T, O’Brien R, Nelson A, Estrada LDL (2006b) Geographical analyses to explore interactions between inherent coffee quality and production environment. In: 21st International Conference of Coffee Science, ASIC 2006, September 2006, MontpellierGoogle Scholar
  18. Laderach P, Jarvis A, Ramirez J (2008) The impact of climate change in coffe-growing regions. In: Taller de Adaptacion al Cambio Climatico en las Comunidades Cafetaleras de la Sierra Madre de Chiapas, Tuxtla Gutierrez, Chiapas, 17–18 Nov 2008Google Scholar
  19. Lingle TR (2001) The Coffee Cuppers’ Handbook – a systematic guide to the sensory evaluation of coffee’s flavour. Long Beach, California, USAGoogle Scholar
  20. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610CrossRefGoogle Scholar
  21. Mata LJ, Nobre C (2006) Background paper: Impacts, vulnerability and adaptation to climate change in Latin America. Paper commissioned by the Secretariat of the United Nations Framework Convention on Climate change. UNFCCC, Bonn, GermanyGoogle Scholar
  22. O’Brien RA (2004) Spatial decision support for selecting tropical crops and forages in uncertain environments. Department of Spatial Science, Curtin University of Technology, Perth, Western AustraliaGoogle Scholar
  23. Pearl J (1990) Bayesian decision methods. In: Shafer G, Pearl J (eds) Readings in uncertain reasoning. Morgan Kaufmann, San Mateo, CA, pp 345–352Google Scholar
  24. Pérez-Portilla E, Partida-Sedas JG, Martines-Pérez D (2005) Determinación de las Subdenominaciones de origen del Café-Veracruz. Revista de Geografía Agrícola, Universidad de Chapingo, Texcoco, Mexico 35:23–38Google Scholar
  25. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259CrossRefGoogle Scholar
  26. Ramírez J, Jarvis A (2008) High resolution downscaled climate change surfaces for global land areas. International Centre for Tropical Agriculture CIAT, Cali, ColombiaGoogle Scholar
  27. Schepp K, Lau I, Rizo L, Suárez G (2008) Sistematización de los Análisis de Riesgos y Oportunidades (ARO) en Nicaragua. AdapCC, Eschborn, GermanyGoogle Scholar
  28. Tukey JW (1977) Exploratory data análisis. Addison-Wesley, Reading, MAGoogle Scholar
  29. UNFCCC (2007) Climate change: impacts, vulnerabilities and adaptation in developing countries, Climate Change Secretariat (UNFCCC). Bonn, GermanyGoogle Scholar
  30. Vaast P, Bertrand B, Perriot J-J, Guyot B, Genard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agric 86:197Google Scholar
  31. Valerio-Hernandez L (2002) Elaboracion del Mapa del Cultivo de Café de Nicaragua: Informe Final. Dirección General de Estrategias Territoriales, Minsiterio de Agropecuario y Forestal, Managua, NicaraguaGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Laderach
    • 1
  • Mark Lundy
    • 1
  • Andy Jarvis
    • 1
  • Julian Ramirez
    • 1
  • Emiliano Perez Portilla
    • 1
  • Kathleen Schepp
    • 1
  • Anton Eitzinger
    • 1
  1. 1.International Centre for Tropical Agriculture (CIAT)ManaguaNicaragua

Personalised recommendations