Medical Implications of Sperm Nuclear Quality

  • Rafael Oliva
  • Sara de Mateo
Part of the Epigenetics and Human Health book series (EHH)


The sperm nucleus is essential in the appropriate transmission of the paternal genome. Therefore, it has long been recognized that one of the key components of the sperm nuclear quality is the quality of the genomic DNA delivered by the sperm cell. In addition, it has recently been uncovered that other important components of the quality of the sperm cell nucleus are represented by its proteome and its epigenome. Sperm genome quality implies a correct number of chromosomes and the integrity of the DNA sequence. Sperm nuclear proteome quality means an appropriate composition in nuclear proteins that organize and condense the male genome, including protamines and other chromatin-associated proteins. The specific organization of the male genome, together with appropriate DNA methylation, and other components of the epigenome such as modified histones and RNA, carried by the sperm cell, constitutes the sperm epigenome. This chapter reviews the current state of the art of the normal genomic, proteomic, and epigenetic sperm cell constitution and the proven and potential medical implications of its anomalies.


Chromatin DNA damage Epigenetic Genome Imprinting Nuclei Protamine Proteome Spermatozoa 



Supported by a grant from the Ministerio de Ciencia y Tecnología BFU2009-07118, fondos FEDER to R.O.


  1. Abu-Hassan D, Koester F, Shoepper B et al (2006) Comet assay of cumulus cells and spermatozoa DNA status, and the relationship to oocyte fertilization and embryo quality following ICSI. Reprod Biomed Online 12:447–452PubMedCrossRefGoogle Scholar
  2. Agbaje IM, McVicar CM, Schock BC et al (2008) Increased concentrations of the oxidative DNA adduct 7, 8-dihydro-8-oxo-2-deoxyguanosine in the germ-line of men with type 1 diabetes. Reprod Biomed Online 16:401–409PubMedCrossRefGoogle Scholar
  3. Ahmad L, Jalali S, Shami SA, Akram Z (2007) Sperm preparation: DNA damage by comet assay in normo- and teratozoospermics. Arch Androl 53:325–338PubMedCrossRefGoogle Scholar
  4. Ahmadi A, Ng SC (1999a) Destruction of protamine in human sperm inhibits sperm binding and penetration in the zona-free hamster penetration test but increases sperm head decondensation and male pronuclear formation in the hamster-ICSI assay. J Assist Reprod Genet 16:128–132PubMedCrossRefGoogle Scholar
  5. Ahmadi A, Ng SC (1999b) Influence of sperm plasma membrane destruction on human sperm head decondensation and pronuclear formation. Arch Androl 42:1–7PubMedCrossRefGoogle Scholar
  6. Ainsworth C, Nixon B, Aitken RJ (2005) Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod 20:2261–2270PubMedCrossRefGoogle Scholar
  7. Ainsworth C, Nixon B, Jansen RP, Aitken RJ (2007) First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod 22:197–200PubMedCrossRefGoogle Scholar
  8. Aitken RJ, Baker MA (2008) The role of proteomics in understanding sperm cell biology. Int J Androl 31:295–302PubMedCrossRefGoogle Scholar
  9. Aitken RJ, Harkiss D, Buckingham D (1993) Relationship between iron-catalysed lipid peroxidation potential and human sperm function. J Reprod Fertil 98:257–265PubMedCrossRefGoogle Scholar
  10. Aitken RJ, Buckingham DW, Brindle J (1995) Analysis of sperm movement in relation to the oxidative stress created by leukocytes in washed sperm preparations and seminal plasma. Hum Reprod 10:2061–2071PubMedGoogle Scholar
  11. Aitken RJ, De Iuliis GN, McLachlan RI (2009) Biological and clinical significance of DNA damage in the male germ line. Int J Androl 32:46–56PubMedCrossRefGoogle Scholar
  12. Alimi E, Martinage A, Arkhis A et al (1993) Amino acid sequence of the human intermediate basic protein 2 (HPI2) from sperm nuclei. Structural relationship with protamine P2. Eur J Biochem 214:445–450PubMedCrossRefGoogle Scholar
  13. Alvarez JG, Sharma RK, Ollero M et al (2002) Increased DNA damage in sperm from leukocytospermic semen samples as determined by the sperm chromatin structure assay. Fertil Steril 78:319–329PubMedCrossRefGoogle Scholar
  14. Ammer H, Henschen A, Lee CH (1986) Isolation and amino-acid sequence analysis of human sperm protamines P1 and P2. Occurrence of two forms of protamine P2. Biol Chem Hoppe Seyler 367:515–522PubMedCrossRefGoogle Scholar
  15. Antinori M, Licata E, Dani G et al (2008) Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial. Reprod Biomed Online 16:835–841PubMedCrossRefGoogle Scholar
  16. Anton E, Vidal F, Blanco J (2007) Role of sperm FISH studies in the genetic reproductive advice of structural reorganization carriers. Hum Reprod 22:2088–2092PubMedCrossRefGoogle Scholar
  17. Anway MD, Skinner MK (2008) Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed Online 16:23–25PubMedCrossRefGoogle Scholar
  18. Aoki VW, Carrell DT (2003) Human protamines and the developing spermatid: their structure, function, expression and relationship with male infertility. Asian J Androl 5:315–324, ReviewPubMedGoogle Scholar
  19. Aoki VW, Liu L, Carrell DT (2005a) Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod 20:1298–1306PubMedCrossRefGoogle Scholar
  20. Aoki VW, Moskovtsev SI, Willis J et al (2005b) DNA integrity is compromised in protamine-deficient human sperm. J Androl 26:741–748PubMedCrossRefGoogle Scholar
  21. Aoki VW, Liu L, Jones KP et al (2006) Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril 86:1408–1415PubMedCrossRefGoogle Scholar
  22. Aravindan GR, Bjordahl J, Jost LK, Evenson DP (1997) Susceptibility of human sperm to in situ DNA denaturation is strongly correlated with DNA strand breaks identified by single-cell electrophoresis. Exp Cell Res 236:231–237PubMedCrossRefGoogle Scholar
  23. Arkhis A, Martinage A, Sautiere P, Chevaillier P (1991) Molecular structure of human protamine P4 (HP4), a minor basic protein of human sperm nuclei. Eur J Biochem 200:387–392PubMedCrossRefGoogle Scholar
  24. Arnedo N, Templado C, Sánchez-Blanque Y et al (2006) Sperm aneuploidy in fathers of Klinefelter’s syndrome offspring assessed by multicolour fluorescent in situ hybridization using probes for chromosomes 6, 13, 18, 21, 22, X and Y. Hum Reprod 21:524–528PubMedCrossRefGoogle Scholar
  25. Arpanahi A, Brinkworth M, Iles D et al (2009) Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 19:1338–1349PubMedCrossRefGoogle Scholar
  26. Auger J, Mesbah M, Huber C, Dadoune JP (1990) Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl 13:452–462PubMedCrossRefGoogle Scholar
  27. Baccetti B, Afzelius BA (1976) The biology of the sperm cell. Monogr Dev Biol 10:1–254PubMedGoogle Scholar
  28. Bach O, Glander HJ, Scholz G, Schwarz J (1990) Electrophoretic patterns of spermatozoal nucleoproteins (NP) in fertile men and infertility patients and comparison with NP of somatic cells. Andrologia 22:217–224PubMedCrossRefGoogle Scholar
  29. Baker MA, Witherdin R, Hetherington L et al (2005) Identification of post-translational modifications that occur during sperm maturation using difference in two-dimensional gel electrophoresis. Proteomics 5:1003–1012PubMedCrossRefGoogle Scholar
  30. Baker MA, Reeves G, Hetherington L et al (2007) Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl 1:524–532PubMedCrossRefGoogle Scholar
  31. Baker MA, Hetherington L, Reeves GM, Aitken RJ (2008a) The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics 8:1720–1730PubMedCrossRefGoogle Scholar
  32. Baker MA, Hetherington L, Reeves G et al (2008b) The rat sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics 8:2312–2321PubMedCrossRefGoogle Scholar
  33. Bakos HW, Thompson JG, Feil D, Lane M (2008) Sperm DNA damage is associated with assisted reproductive technology pregnancy. Int J Androl 31:518–526PubMedCrossRefGoogle Scholar
  34. Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8:227PubMedCrossRefGoogle Scholar
  35. Balhorn R, Reed S, Tanphaichitr N (1988) Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia 44:52–55PubMedCrossRefGoogle Scholar
  36. Balhorn R, Corzett M, Mazrimas JA (1992) Formation of intraprotamine disulfides in vitro. Arch Biochem Biophys 296:384–393PubMedCrossRefGoogle Scholar
  37. Banks S, King SA, Irvine DS, Saunders PT (2005) Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction 129:505–514PubMedCrossRefGoogle Scholar
  38. Barnes DE, Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38:445–476PubMedCrossRefGoogle Scholar
  39. Bartoov B, Berkovitz A, Eltes F et al (2003) Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril 80:1413–1419PubMedCrossRefGoogle Scholar
  40. Bélaïche D, Loir M, Kruggle W, Sautière P (1987) Isolation and characterization of two protamines St1 and St2 from stallion spermatozoa, and amino-acid sequence of the major protamine St1. Biochim Biophys Acta 913:145–149PubMedCrossRefGoogle Scholar
  41. Bellvé AR, McKay DJ, Renaux BS, Dixon GH (1988) Purification and characterization of mouse protamines P1 and P2. Amino acid sequence of P2. Biochemistry 27:2890–2897PubMedCrossRefGoogle Scholar
  42. Belokopytova IA, Kostyleva EI, Tomilin AN, Vorob’ev VI (1993) Human male infertility may be due to a decrease of the protamine P2 content in sperm chromatin. Mol Reprod Dev 34:53–57PubMedCrossRefGoogle Scholar
  43. Bench GS, Friz AM, Corzett MH et al (1996) DNA and total protamine masses in individual sperm from fertile mammalian subjects. Cytometry 23:263–271PubMedCrossRefGoogle Scholar
  44. Bench G, Corzett MH, De Yebra L et al (1998) Protein and DNA contents in sperm from an infertile human male possessing protamine defects that vary over time. Mol Reprod Dev 50:345–353PubMedCrossRefGoogle Scholar
  45. Benchaib M, Braun V, Lornage J et al (2003) Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod 18:1023–1028PubMedCrossRefGoogle Scholar
  46. Benchaib M, Lornage J, Mazoyer C et al (2007) Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril 87:93–100PubMedCrossRefGoogle Scholar
  47. Berkovitz A, Eltes F, Yaari S et al (2005) The morphological normalcy of the sperm nucleus and pregnancy rate of intracytoplasmic injection with morphologically selected sperm. Hum Reprod 20:185–190PubMedCrossRefGoogle Scholar
  48. Berkovitz A, Eltes F, Lederman H et al (2006) How to improve IVF-ICSI outcome by sperm selection. Reprod Biomed Online 12:634–638PubMedCrossRefGoogle Scholar
  49. Bianchi F, Rousseaux-Prevost R, Sautiere P, Rousseaux J (1992) P2 protamines from human sperm are zinc -finger proteins with one CYS2/HIS2 motif. Biochem Biophys Res Commun 182:540–547PubMedCrossRefGoogle Scholar
  50. Biermann K, Steger K (2007) Epigenetics in male germ cells. J Androl 28:466–480PubMedCrossRefGoogle Scholar
  51. Bizzaro D, Manicardi GC, Bianchi PG et al (1998) In-situ competition between protamine and fluorochromes for sperm DNA. Mol Hum Reprod 4:127–132PubMedCrossRefGoogle Scholar
  52. Bjorndahl L, Kvist U (2010) Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod 16:23–29PubMedCrossRefGoogle Scholar
  53. Blanchard Y, Lescoat D, Le Lannou D (1990) Anomalous distribution of nuclear basic proteins in round-headed human spermatozoa. Andrologia 22:549–555PubMedCrossRefGoogle Scholar
  54. Borini A, Tarozzi N, Bizzaro D et al (2006) Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod 21:2876–2881PubMedCrossRefGoogle Scholar
  55. Bosch M, Rajmil O, Egozcue J, Templado C (2003) Linear increase of structural and numerical chromosome 9 abnormalities in human sperm regarding age. Eur J Hum Genet 11:754–759PubMedCrossRefGoogle Scholar
  56. Bower PA, Yelick PC, Hecht NB (1987) Both P1 and P2 protamine genes are expressed in mouse, hamster, and rat. Biol Reprod 37:479–488PubMedCrossRefGoogle Scholar
  57. Bungum M, Humaidan P, Spano M et al (2004) The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod 19:1401–1408PubMedCrossRefGoogle Scholar
  58. Bungum M, Humaidan P, Axmon A et al (2007) Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod 22:174–179PubMedCrossRefGoogle Scholar
  59. Bungum M, Spanò M, Humaidan P et al (2008) Sperm chromatin structure assay parameters measured after density gradient centrifugation are not predictive for the outcome of ART. Hum Reprod 23:4–10PubMedCrossRefGoogle Scholar
  60. Bustos-Obregón E, Leiva S (1983) Chromatin packing in normal and teratozoospermic human ejaculated spermatozoa. Andrologia 15:468–478PubMedCrossRefGoogle Scholar
  61. Butler MG (2009) Genomic imprinting disorders in humans: a mini-review. J Assist Reprod Genet 26:477–486PubMedCrossRefGoogle Scholar
  62. Carlsen E, Giwercman A, Keiding N, Skakkebaek NE (1992) Evidence for decreasing quality of semen during past 50 years. BMJ 305:609–613PubMedCrossRefGoogle Scholar
  63. Carrell DT (2008) Contributions of spermatozoa to embryogenesis: assays to evaluate their genetic and epigenetic fitness. Reprod Biomed Online 16:474–484PubMedCrossRefGoogle Scholar
  64. Carrell DT, Liu L (2001) Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl 22:604–610PubMedGoogle Scholar
  65. Carrell DT, Emery BR, Liu L (1999) Characterization of aneuploidy rates, protamine levels, ultrastructure, and functional ability of round-headed sperm from two siblings and implications for intracytoplasmic sperm injection. Fertil Steril 71:511–516PubMedCrossRefGoogle Scholar
  66. Carrell DT, Emery BR, Hammoud S (2008) The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome. Int J Androl 31:537–545PubMedCrossRefGoogle Scholar
  67. Chakravarty S, Bansal P, Sutovsky P, Gupta SK (2008) Role of proteasomal activity in the induction of acrosomal exocytosis in human spermatozoa. Reprod Biomed Online 16:391–400PubMedCrossRefGoogle Scholar
  68. Chatzimeletiou K, Morrison EE, Prapas N (2008) The centrosome and early embryogenesis: clinical insights. Reprod Biomed Online 16:485–491PubMedCrossRefGoogle Scholar
  69. Chavarro JE, Toth TL, Wright DL et al (2009) Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertil Steril. doi: 10.1016/j.fertnstert.2009.01.100 PubMedGoogle Scholar
  70. Check JH, Graziano V, Cohen R et al (2005) Effect of an abnormal sperm chromatin structural assay (SCSA) on pregnancy outcome following (IVF) with ICSI in previous IVF failures. Arch Androl 51:121–124PubMedCrossRefGoogle Scholar
  71. Chen S, Cao J, Fei RR et al (2005) Analysis of protamine content in patients with asthenozoospermia. Zhonghua Nan Ke Xue 11:587–589PubMedGoogle Scholar
  72. Chevaillier P, Mauro N, Feneux D et al (1987) Anomalous protein complement of sperm nuclei in some infertile men. Lancet 2:806–807PubMedCrossRefGoogle Scholar
  73. Chiamchanya C, Kaewnoonual N, Visutakul P (2010) Comparative study of the effects of three semen preparation media on semen analysis, DNA damage and protamine deficiency, and the correlation between DNA integrity and sperm parameters. Asian J Androl 12:271–277PubMedCrossRefGoogle Scholar
  74. Chohan KR, Griffin JT, Lafromboise M et al (2006) Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl 27:53–59PubMedCrossRefGoogle Scholar
  75. Choi SK, Yoon SR, Calabrese P, Arnheim N (2008) A germ-line-selective advantage rather than an increased mutation rate can explain some unexpectedly common human disease mutations. Proc Natl Acad Sci USA 105:10143–10148PubMedCrossRefGoogle Scholar
  76. Codrington AM, Hales BF, Robaire B (2007) Exposure of male rats to cyclophosphamide alters the chromatin structure and basic proteome in spermatozoa. Hum Reprod 22:1431–1442PubMedCrossRefGoogle Scholar
  77. Colleu D, Lescoat D, Boujard D, Le Lannou D (1988) Human spermatozoal nuclear maturity in normozoospermia and asthenozoospermia. Arch Androl 21:155–162PubMedCrossRefGoogle Scholar
  78. Colleu D, Lescoat D, Gouranton J (1996) Nuclear maturity of human spermatozoa selected by swim-up or by Percoll gradient centrifugation procedures. Fertil Steril 65:160–164PubMedGoogle Scholar
  79. Conrad M, Moreno SG, Sinowatz F et al (2005) The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol 25:7637–7644PubMedCrossRefGoogle Scholar
  80. Corzett M, Mazrimas J, Balhorn R (2002) Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev 61:519–527PubMedCrossRefGoogle Scholar
  81. Cox GF, Burger JL, Mau UA (2002) Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 71:162–164PubMedCrossRefGoogle Scholar
  82. Daris B, Goropevsek A, Hojnik N, Vlaisavljević V (2010) Sperm morphological abnormalities as indicators of DNA fragmentation and fertilization in ICSI. Arch Gynecol Obstet 281:363–367PubMedCrossRefGoogle Scholar
  83. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  84. De Iuliis GN, Newey RJ, King BV, Aitken RJ (2009) Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS ONE 4:e6446PubMedCrossRefGoogle Scholar
  85. de Mateo S, Martinez-Heredia J, Estanyol JM et al (2007) Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics 7:4264–4277PubMedCrossRefGoogle Scholar
  86. de Mateo S, Gázquez C, Guimerà M et al (2009) Protamine 2 precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril 91:715–722PubMedCrossRefGoogle Scholar
  87. de Yebra L, Oliva R (1993) Rapid analysis of mammalian sperm nuclear proteins. Anal Biochem 209:201–203PubMedCrossRefGoogle Scholar
  88. de Yebra L, Ballescà JL, Vanrell JA et al (1993) Complete selective absence of protamine P2 in humans. J Biol Chem 268:10553–10557PubMedGoogle Scholar
  89. de Yebra L, Ballescà JL, Vanrell JA et al (1998) Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril 69:755–759PubMedCrossRefGoogle Scholar
  90. DeBaun MR, Neimitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72:156–160PubMedCrossRefGoogle Scholar
  91. Derijck A, van der Heijden G, Giele M et al (2008) DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet 17:1922–1937PubMedCrossRefGoogle Scholar
  92. Dirican EK, Ozgün OD, Akarsu S et al (2008) Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet 25:375–381PubMedCrossRefGoogle Scholar
  93. Domínguez-Fandos D, Camejo MI, Ballescà JL, Oliva R (2007) Human sperm DNA fragmentation: correlation of TUNEL results as assessed by flow cytometry and optical microscopy. Cytom A 71:1011–1018CrossRefGoogle Scholar
  94. Donnelly ET, O’Connell M, McClure N, Lewis SE (2000) Differences in nuclear DNA fragmentation and mitochondrial integrity of semen and prepared human spermatozoa. Hum Reprod 15:1552–1561PubMedCrossRefGoogle Scholar
  95. Duran EH, Morshedi M, Taylor S, Oehninger S (2002) Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod 17:3122–3128PubMedCrossRefGoogle Scholar
  96. Edelstein A, Yavetz H, Kleiman SE et al (2008) Deoxyribonucleic acid-damaged sperm in cryopreserved-thawed specimens from cancer patients and healthy men. Fertil Steril 90:205–208PubMedCrossRefGoogle Scholar
  97. Engel S, Weber H, Petzoldt R et al (2001) An improved method of sperm selection by glass wool filtration. Andrologia 33:223–230PubMedCrossRefGoogle Scholar
  98. Erel CT, Senturk LM, Irez T et al (2000) Sperm-preparation techniques for men with normal and abnormal semen analysis. A comparison. J Reprod Med 45:917–922PubMedGoogle Scholar
  99. Erenpreiss J, Hlevicka S, Zalkalns J, Erenpreisa J (2002) Effect of leukocytospermia on sperm DNA integrity: a negative effect in abnormal semen samples. J Androl 23:717–723PubMedGoogle Scholar
  100. Evenson DP, Wixon R (2006) Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology 65:979–991PubMedCrossRefGoogle Scholar
  101. Evenson DP, Darzynkiewicz Z, Melamed MR (1980) Comparison of human and mouse sperm chromatin structure by flow cytometry. Chromosoma 78:225–238PubMedCrossRefGoogle Scholar
  102. Evenson DP, Jost LK, Corzett M, Balhorn R (2000) Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J Androl 21:739–746PubMedGoogle Scholar
  103. Farfalli VI, Magli MC, Ferraretti AP, Gianaroli L (2007) Role of aneuploidy on embryo implantation. Gynecol Obstet Invest 64:161–165PubMedCrossRefGoogle Scholar
  104. Fariello RM, Del Giudice PT, Spaine DM et al (2009) Effect of leukocytospermia and processing by discontinuous density gradient on sperm nuclear DNA fragmentation and mitochondrial activity. J Assist Reprod Genet 26:151–157PubMedCrossRefGoogle Scholar
  105. Fernández JL, Muriel L, Rivero MT et al (2003) The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl 24:59–66PubMedGoogle Scholar
  106. Filatov MV, Semenova EV, Vorob’eva OA et al (1999) Relationship between abnormal sperm chromatin packing and IVF results. Mol Hum Reprod 5:825–830PubMedCrossRefGoogle Scholar
  107. Fleming SD, Ilad RS, Griffin AM et al (2008) Prospective controlled trial of an electrophoretic method of sperm preparation for assisted reproduction: comparison with density gradient centrifugation. Human Reprod 23:2646–2651CrossRefGoogle Scholar
  108. Fraga CG, Motchnik PA, Shigenaga MK et al (1991) Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci USA 88:11003–11006PubMedCrossRefGoogle Scholar
  109. Franken DR, Franken CJ, de la Guerre H et al (1999) Normal sperm morphology and chromatin packaging: comparison between aniline blue and chromomycin A3 staining. Andrologia 31:361–366PubMedCrossRefGoogle Scholar
  110. Frydman N, Prisant N, Hesters L et al (2008) Adequate ovarian follicular status does not prevent the decrease in pregnancy rates associated with high sperm DNA fragmentation. Fertil Steril 89:92–97PubMedCrossRefGoogle Scholar
  111. Gallegos G, Ramos B, Santiso R et al (2008) Sperm DNA fragmentation in infertile men with genitourinary infection by Chlamydia trachomatis and mycoplasma. Fertil Steril 90:328–334PubMedCrossRefGoogle Scholar
  112. Gamble SC, Chotai D, Odontiadis M (2007) Prohibitin, a protein downregulated by androgens, represses androgen receptor activity. Oncogene 26:1757–1768PubMedCrossRefGoogle Scholar
  113. Gardiner-Garden M, Ballesteros M, Gordon M, Tam PP (1998) Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol 18:3350–3356PubMedGoogle Scholar
  114. Garrido N, Remohí J, Martínez-Conejero JA et al (2008) Contribution of sperm molecular features to embryo quality and assisted reproduction success. Reprod Biomed Online 17:855–865PubMedCrossRefGoogle Scholar
  115. Gatewood JM, Cook GR, Balhorn R et al (1987) Sequence-specific packaging of DNA in human sperm chromatin. Science 236:962–964PubMedCrossRefGoogle Scholar
  116. Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z (1993) Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res 207:202–205PubMedCrossRefGoogle Scholar
  117. Gosálvez J, Cortés-Gutierez E, López-Fernández C et al (2009) Sperm deoxyribonucleic acid fragmentation dynamics in fertile donors. Fertil Steril 92:170–173PubMedCrossRefGoogle Scholar
  118. Greco E, Iacobelli M, Rienzi L et al (2005a) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26:349–353PubMedCrossRefGoogle Scholar
  119. Greco E, Romano S, Iacobelli M et al (2005b) ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod 20:2590–2594PubMedCrossRefGoogle Scholar
  120. Greco E, Scarselli F, Iacobelli M et al (2005c) Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod 20:226–230PubMedCrossRefGoogle Scholar
  121. Gur Y, Breitbart H (2008) Protein synthesis in sperm: dialog between mitochondria and cytoplasm. Mol Cell Endocrinol 282:45–55PubMedCrossRefGoogle Scholar
  122. Gusse M, Sautière P, Bélaiche D et al (1986) Purification and characterization of nuclear basic proteins of human sperm. Biochim Biophys Acta 884:124–134PubMedCrossRefGoogle Scholar
  123. Haaf T, Ward DC (1995) Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res 219:604–611PubMedCrossRefGoogle Scholar
  124. Hammadeh ME, al-Hasani S, Stieber M et al (1996) The effect of chromatin condensation (aniline blue staining) and morphology (strict criteria) of human spermatozoa on fertilization, cleavage and pregnancy rates in an intracytoplasmic sperm injection programme. Hum Reprod 11:2468–2471PubMedCrossRefGoogle Scholar
  125. Hammadeh ME, Stieber M, Haidl G, Schmidt W (1998) Association between sperm cell chromatin condensation, morphology based on strict criteria, and fertilization, cleavage and pregnancy rates in an IVF program. Andrologia 30:29–35PubMedCrossRefGoogle Scholar
  126. Hammadeh ME, al-Hasani S, Doerr S et al (1999) Comparison between chromatin condensation and morphology from testis biopsy extracted and ejaculated spermatozoa and their relationship to ICSI outcome. Hum Reprod 14:363–367PubMedCrossRefGoogle Scholar
  127. Hammadeh ME, Kühnen A, Amer AS et al (2001) Comparison of sperm preparation methods: effect on chromatin and morphology recovery rates and their consequences on the clinical outcome after in vitro fertilization embryo transfer. Int J Androl 24:360–368PubMedCrossRefGoogle Scholar
  128. Hammadeh ME, Radwan M, Al-Hasani S et al (2006) Comparison of reactive oxygen species concentration in seminal plasma and semen parameters in partners of pregnant and non-pregnant patients after IVF/ICSI. Reprod Biomed Online 13:696–706PubMedCrossRefGoogle Scholar
  129. Hammoud SS, Nix DA, Zhang H (2009a) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478PubMedGoogle Scholar
  130. Hammoud SS, Purwar J, Pflueger C et al (2009b) Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. doi: 10.1016/j.fertnstert.2009.09.010 Google Scholar
  131. Hammoud S, Liu L, Carrell DT (2009c) Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation. Andrologia 41:88–94PubMedCrossRefGoogle Scholar
  132. Hazout A, Dumont-Hassan M, Junca AM et al (2006) High-magnification ICSI overcomes paternal effect resistant to conventional ICSI. Reprod Biomed Online 12:19–25PubMedCrossRefGoogle Scholar
  133. Hazzouri M, Rousseaux S, Mongelard F et al (2000) Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Mol Reprod 55:307–315CrossRefGoogle Scholar
  134. Henkel R, Kierspel E, Hajimohammad M et al (2003) DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online 7:477–484PubMedCrossRefGoogle Scholar
  135. Henkel R, Hajimohammad M, Stalf T et al (2004) Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril 81:965–972PubMedCrossRefGoogle Scholar
  136. Høst E, Lindenberg S, Smidt-Jensen S (2000a) DNA strand breaks in human spermatozoa: correlation with fertilization in vitro in oligozoospermic men and in men with unexplained infertility. Acta Obstet Gynecol Scand 79:189–193PubMedCrossRefGoogle Scholar
  137. Høst E, Lindenberg S, Smidt-Jensen S (2000b) The role of DNA strand breaks in human spermatozoa used for IVF and ICSI. Acta Obstet Gynecol Scand 79:559–563PubMedCrossRefGoogle Scholar
  138. Hsieh YY, Chang CC, Lin CS (2006) Seminal malondialdehyde concentration but not glutathione peroxidase activity is negatively correlated with seminal concentration and motility. Int J Biol Sci 2:23–29PubMedCrossRefGoogle Scholar
  139. Huang CC, Lin DP, Tsao HM et al (2005) Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril 84:130–140PubMedCrossRefGoogle Scholar
  140. Irvine DS, Twigg JP, Gordon EL et al (2000) DNA integrity in human spermatozoa: relationships with semen quality. J Androl 21:33–44PubMedGoogle Scholar
  141. Iuchi Y, Kaneko T, Matsuki S et al (2003) Concerted changes in the YB2/RYB-a protein and protamine 2 messenger RNA in the mouse testis under heat stress. Biol Reprod 68:129–135PubMedCrossRefGoogle Scholar
  142. Jager S (1990) Sperm nuclear stability and male infertility. Arch Androl 23:253–259CrossRefGoogle Scholar
  143. Jakab A, Sakkas D, Delpiano E et al (2005) Intracytoplasmic sperm injection: a novel selection method for sperm with normal frequency of chromosomal aneuploidies. Fertil Steril 84:1665–1673PubMedCrossRefGoogle Scholar
  144. Jaroudi S, Kakourou G, Cawood S et al (2009) Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod 24:2649–2655PubMedCrossRefGoogle Scholar
  145. Jedrzejczak P, Taszarek-Hauke G, Hauke J et al (2008) Prediction of spontaneous conception based on semen parameters. Int J Androl 31:499–507PubMedCrossRefGoogle Scholar
  146. Junca AM, Cohen-Bacrie P, Belloc S et al (2009) Teratozoospermia at the time of intracytoplasmic morphologically selected sperm injection (IMSI). Gynécol Obstét Fertil 37:552–557PubMedCrossRefGoogle Scholar
  147. Kao SH, Chao HT, Chen HW et al (2008) Increase of oxidative stress in human sperm with lower motility. Fertil Steril 89:1183–1190PubMedCrossRefGoogle Scholar
  148. Katayose H, Yanagida K, Hashimoto S et al (2003) Use of diamide-acridine orange fluorescence staining to detect aberrant protamination of human-ejaculated sperm nuclei. Fertil Steril 79:670–676PubMedCrossRefGoogle Scholar
  149. Keefe DL, Liu L (2009) Telomeres and reproductive aging. Reprod Fertil Dev 21:10–14PubMedCrossRefGoogle Scholar
  150. Khara KK, Vlad M, Griffiths M, Kennedy CR (1997) Human protamines and male infertility. J Assist Reprod Genet 14:282–290PubMedCrossRefGoogle Scholar
  151. Kierszenbaum AL, Tres LL (2004) The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol 67:271–284PubMedCrossRefGoogle Scholar
  152. Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434:583–589PubMedCrossRefGoogle Scholar
  153. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97PubMedCrossRefGoogle Scholar
  154. Kobayashi H, Larson K, Sharma RK et al (2001) DNA damage in patients with untreated cancer as measured by the sperm chromatin structure assay. Fertil Steril 75:469–475PubMedCrossRefGoogle Scholar
  155. Kobayashi H, Sato A, Otsu E et al (2007) Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 16:2542–2551PubMedCrossRefGoogle Scholar
  156. Kriegel TM, Heidenreich F, Kettner K et al (2009) Identification of diabetes- and obesity-associated proteomic changes in human spermatozoa by difference gel electrophoresis. Reprod Biomed Online 19:660–670PubMedCrossRefGoogle Scholar
  157. Kühnert B, Nieschlag E (2004) Reproductive functions of the ageing male. Hum Reprod Update 10:327–339PubMedCrossRefGoogle Scholar
  158. Kurtev V, Margueron R, Kroboth K (2004) Transcriptional regulation by the repressor of estrogen receptor activity via recruitment of histone deacetylases. J Biol Chem 279:24834–24843PubMedCrossRefGoogle Scholar
  159. Lanzafame FM, La Vignera S, Vicari E, Calogero AE (2009) Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online 19:638–659PubMedCrossRefGoogle Scholar
  160. Larson KL, Brannian JD, Timm BK et al (1999) Density gradient centrifugation and glass wool filtration of semen remove spermatozoa with damaged chromatin structure. Hum Reprod 14:2015–2019PubMedCrossRefGoogle Scholar
  161. Larson KL, DeJonge CJ, Barnes AM et al (2000) Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod 15:1717–1722PubMedCrossRefGoogle Scholar
  162. Larson-Cook KL, Brannian JD, Hansen KA et al (2003) Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril 80:895–902PubMedCrossRefGoogle Scholar
  163. Le Lannou D, Colleu D, Boujard D et al (1986) Effect of duration of abstinence on maturity of human spermatozoa nucleus. Arch Androl 17:35–38PubMedCrossRefGoogle Scholar
  164. Leduc F, Nkoma GB, Boissonneault G (2008) Spermiogenesis and DNA repair: a possible etiology of human infertility and genetic disorders. Syst Biol Reprod Med 54:3–10PubMedCrossRefGoogle Scholar
  165. Lefièvre L, Chen Y, Conner SJ et al (2007) Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics 7:3066–3084PubMedCrossRefGoogle Scholar
  166. Lescoat D, Colleu D, Boujard D, Le Lannou D (1988) Electrophoretic characteristics of nuclear proteins from human spermatozoa. Arch Androl 20:35–40PubMedCrossRefGoogle Scholar
  167. Lewis SE, Agbaje IM (2008) Using the alkaline comet assay in prognostic tests for male infertility and assisted reproductive technology outcomes. Mutagenesis 23:163–170PubMedCrossRefGoogle Scholar
  168. Lewis SE, Sterling ES, Young IS, Thompson W (1997) Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertil Steril 67:142–147PubMedCrossRefGoogle Scholar
  169. Lewis JD, Song Y, de Jong ME et al (2003) A walk though vertebrate and invertebrate protamines. Chromosoma 111:473–482PubMedCrossRefGoogle Scholar
  170. Li K, Shang X, Chen Y (2004) High-performance liquid chromatographic detection of lipid peroxidation in human seminal plasma and its application to male infertility. Clin Chim Acta 346:199–203PubMedCrossRefGoogle Scholar
  171. Li Y, Lalancette C, Miller D, Krawetz SA (2008) Characterization of nucleohistone and nucleoprotamine components in the mature human sperm nucleus. Asian J Androl 10:535–541PubMedCrossRefGoogle Scholar
  172. Liao TT, Xiang Z, Zhu WB, Fan LQ (2009) Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian J Androl 11:683–693PubMedCrossRefGoogle Scholar
  173. Lin MH, Kuo-Kuang Lee R, Li SH et al (2008) Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril 90:352–359PubMedCrossRefGoogle Scholar
  174. Loft S, Kold-Jensen T, Hjollund NH et al (2003) Oxidative DNA damage in human sperm influences time to pregnancy. Hum Reprod 18:1265–1272PubMedCrossRefGoogle Scholar
  175. Lolis D, Georgiou I, Syrrou M et al (1996) Chromomycin A3-staining as an indicator of protamine deficiency and fertilization. Int J Androl 19:23–27PubMedCrossRefGoogle Scholar
  176. Lopes S, Sun JG, Jurisicova A et al (1998) Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril 69:528–532PubMedCrossRefGoogle Scholar
  177. Lopes FL, Fortier AL, Darricarrère N et al (2009) Reproductive and epigenetic outcomes associated with aging mouse oocytes. Hum Mol Genet 18:2032–2044PubMedCrossRefGoogle Scholar
  178. Love CC, Kenney RM (1999) Scrotal heat stress induces altered sperm chromatin structure associated with a decrease in protamine disulfide bonding in the stallion. Biol Reprod 60:615–620PubMedCrossRefGoogle Scholar
  179. Manicardi GC, Bianchi PG, Pantano S et al (1995) Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod 52:864–867PubMedCrossRefGoogle Scholar
  180. Manipalviratn S, DeCherney A, Segars J (2009) Imprinting disorders and assisted reproductive technology. Fertil Steril 91:305–315PubMedCrossRefGoogle Scholar
  181. Marques CJ, Carvalho F, Sousa M, Barros A (2004) Genomic imprinting in disruptive spermatogenesis. Lancet 363:1700–1702PubMedCrossRefGoogle Scholar
  182. Marques CJ, Costa P, Vaz B et al (2008) Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod 14:67–74PubMedCrossRefGoogle Scholar
  183. Martin RH (2005) Mechanisms of nondisjunction in human spermatogenesis. Cytogenet Genome Res 111:245–249PubMedCrossRefGoogle Scholar
  184. Martin RH (2008) Meiotic errors in human oogenesis and spermatogenesis. Reprod Biomed Online 16:523–531PubMedCrossRefGoogle Scholar
  185. Martinage A, Arkhis A, Alimi E et al (1990) Molecular characterization of nuclear basic protein HPI1, a putative precursor of human sperm protamines HP2 and HP3. Eur J Biochem 191:449–451PubMedCrossRefGoogle Scholar
  186. Martínez-Heredia J, Estanyol JM, Ballesca JL, Oliva R (2006) Proteomic identification of human sperm proteins. Proteomics 6:4356–4369PubMedCrossRefGoogle Scholar
  187. Martínez-Heredia J, de Mateo S, Vidal-Taboada JM et al (2008) Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod 23:783–791PubMedCrossRefGoogle Scholar
  188. McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183PubMedCrossRefGoogle Scholar
  189. McKay DJ, Renaux BS, Dixon GH (1986) Human sperm protamines. Amino-acid sequences of two forms of protamine P2. Eur J Biochem 156:5–8PubMedCrossRefGoogle Scholar
  190. McKusick VA (2007) Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 80:588–604PubMedCrossRefGoogle Scholar
  191. Mengual L, Ballescá JL, Ascaso C, Oliva R (2003) Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. J Androl 24:438–447PubMedGoogle Scholar
  192. Mezquita C (1985) Chromatin composition, structure and function in spermatogenesis. Revis Biol Celular 5:1–124Google Scholar
  193. Miciński P, Pawlicki K, Wielgus E et al (2009) The sperm chromatin structure assay (SCSA) as prognostic factor in IVF/ICSI program. Reprod Biol 9:65–70PubMedCrossRefGoogle Scholar
  194. Milingos S, Comhaire FH, Liapi A, Aravantinos D (1996) The value of semen characteristics and tests of sperm function in selecting couples for intra-uterine insemination. Eur J Obstet Gynecol Reprod Biol 64:115–118PubMedCrossRefGoogle Scholar
  195. Mitchell V, Steger K, Marchetti C et al (2005) Cellular expression of protamine 1 and 2 transcripts in testicular spermatids from azoospermic men submitted to TESE-ICSI. Mol Hum Reprod 11:373–379PubMedCrossRefGoogle Scholar
  196. Moll AC, Imhof SM, Cruysberg JR, Schouten-van Meeteren AY, Boers M, van Leeuwen FE (2003) Incidence of retinoblastoma in children born after in-vitro fertilization. Lancet 361:309–310PubMedCrossRefGoogle Scholar
  197. Morrell JM, Moffatt O, Sakkas D et al (2004) Reduced senescence and retained nuclear DNA integrity in human spermatozoa prepared by density gradient centrifugation. J Assist Reprod Genet 21:217–222PubMedCrossRefGoogle Scholar
  198. Morris ID, Ilott S, Dixon L, Brison DR (2002) The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (comet assay) and its relationship to fertilization and embryo development. Hum Reprod 17:990–998PubMedCrossRefGoogle Scholar
  199. Moskovtsev SI, Lecker I, Mullen JB et al (2009) Cause-specific treatment in patients with high sperm DNA damage resulted in significant DNA improvement. Syst Biol Reprod Med 55:109–115PubMedCrossRefGoogle Scholar
  200. Mudrak O, Tomilin N, Zalensky A (2005) Chromosome architecture in the decondensing human sperm nucleus. J Cell Sci 118:4541–4550PubMedCrossRefGoogle Scholar
  201. Muratori M, Tamburrino L, Tocci V et al (2009) Small variations in crucial steps of tunel assay coupled to flow cytometry greatly affect measures of sperm DNA fragmentation. J Androl. doi: 10.2164/jandrol.109.008508 PubMedGoogle Scholar
  202. Muriel L, Garrido N, Fernández JL et al (2006a) Value of the sperm deoxyribonucleic acid fragmentation level, as measured by the sperm chromatin dispersion test, in the outcome of in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril 85:371–383PubMedCrossRefGoogle Scholar
  203. Muriel L, Meseguer M, Fernández JL et al (2006b) Value of the sperm chromatin dispersion test in predicting pregnancy outcome in intrauterine insemination: a blind prospective study. Hum Reprod 21:738–744PubMedCrossRefGoogle Scholar
  204. Nakamura H, Kimura T, Nakajima A et al (2002) Detection of oxidative stress in seminal plasma and fractionated sperm from subfertile male patients. Eur J Obstet Gynecol Reprod Biol 105:155–160PubMedCrossRefGoogle Scholar
  205. Nani JM, Jeyendran RS (2001) Sperm processing: glass wool column filtration. Arch Androl 47:15–21PubMedCrossRefGoogle Scholar
  206. Nasr-Esfahani MH, Razavi S, Mardani M (2001) Relation between different human sperm nuclear maturity tests and in vitro fertilization. J Assist Reprod Genet 18:219–225PubMedCrossRefGoogle Scholar
  207. Nasr-Esfahani MH, Razavi S, Mozdarani H et al (2004a) Relationship between protamine deficiency with fertilization rate and incidence of sperm premature chromosomal condensation post-ICSI. Andrologia 36:95–100PubMedCrossRefGoogle Scholar
  208. Nasr-Esfahani MH, Salehi M, Razavi S et al (2004b) Effect of protamine-2 deficiency on ICSI outcome. Reprod Biomed Online 9:652–658PubMedCrossRefGoogle Scholar
  209. Nasr-Esfahani MH, Salehi M, Razavi S et al (2005) Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod Biomed Online 11:198–205PubMedCrossRefGoogle Scholar
  210. Nasr-Esfahani MH, Razavi S, Vahdati AA et al (2008a) Evaluation of sperm selection procedure based on hyaluronic acid binding ability on ICSI outcome. J Assist Reprod Genet 25:197–203PubMedCrossRefGoogle Scholar
  211. Nasr-Esfahani MH, Razavi S, Tavalaee M (2008b) Failed fertilization after ICSI and spermiogenic defects. Fertil Steril 89:892–898PubMedCrossRefGoogle Scholar
  212. Nei M (1969) Gene duplication and nucleotide substitution in evolution. Nature 221:40–42PubMedCrossRefGoogle Scholar
  213. O’Connell M, McClure N, Powell LA et al (2003) Differences in mitochondrial and nuclear DNA status of high-density and low-density sperm fractions after density centrifugation preparation. Fertil Steril 79:754–762PubMedCrossRefGoogle Scholar
  214. O’Flaherty C, Vaisheva F, Hales BF et al (2008) Characterization of sperm chromatin quality in testicular cancer and Hodgkin’s lymphoma patients prior to chemotherapy. Hum Reprod 23:1044–1052PubMedCrossRefGoogle Scholar
  215. O’Flaherty C, Hales BF, Chan P, Robaire B (2009) Impact of chemotherapeutics and advanced testicular cancer or Hodgkin lymphoma on sperm deoxyribonucleic acid integrity. Fertil Steril. doi: 10.1016/j.fertnstert.2009.05.068 PubMedGoogle Scholar
  216. Oliva R (2006) Protamines and male infertility. Hum Reprod Update 12:417–435PubMedCrossRefGoogle Scholar
  217. Oliva R, Dixon GH (1991) Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol 40:25–94PubMedCrossRefGoogle Scholar
  218. Oliva R, Martínez-Heredia J, Estanyol JM (2008) Proteomics in the study of the sperm cell composition, differentiation and function. Syst Biol Reprod Med 54:23–36PubMedCrossRefGoogle Scholar
  219. Oliva R, de Mateo S, Estanyol JM (2009) Sperm cell proteomics. Proteomics 9:1004–1017PubMedCrossRefGoogle Scholar
  220. Ostermeier GC, Miller D, Huntriss JD et al (2004) Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429:154PubMedCrossRefGoogle Scholar
  221. Ozmen B, Caglar GS, Koster F et al (2007) Relationship between sperm DNA damage, induced acrosome reaction and viability in ICSI patients. Reprod Biomed Online 15:208–214PubMedCrossRefGoogle Scholar
  222. Paasch U, Grunewald S, Glander HJ (2007) Sperm selection in assisted reproductive techniques. Soc Reprod Fertil Suppl 65:515–525PubMedGoogle Scholar
  223. Parmegiani L, Cognigni GE, Ciampaglia W et al (2010) Efficiency of hyaluronic acid (HA) sperm selection. J Assist Reprod Genet 27:13–16PubMedCrossRefGoogle Scholar
  224. Payne JF, Raburn DJ, Couchman GM et al (2005) Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril 84:356–364PubMedCrossRefGoogle Scholar
  225. Peddinti D, Nanduri B, Kaya A et al (2008) Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol 2:19PubMedCrossRefGoogle Scholar
  226. Poccia D (1986) Remodeling of nucleoproteins during gametogenesis, fertilization, and early development. Int Rev Cytol 105:1–65PubMedCrossRefGoogle Scholar
  227. Potts RJ, Newbury CJ, Smith G et al (1999) Sperm chromatin damage associated with male smoking. Mutat Res 423:103–111PubMedCrossRefGoogle Scholar
  228. Ramos L, van der Heijden GW, Derijck A et al (2008) Incomplete nuclear transformation of human spermatozoa in oligo-astheno-teratospermia: characterization by indirect immunofluorescence of chromatin and thiol status. Hum Reprod 23:259–270PubMedCrossRefGoogle Scholar
  229. Rattray AJ, Strathern JN (2003) Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu Rev Genet 37:31–66PubMedCrossRefGoogle Scholar
  230. Rawe VY, Diaz ES, Abdelmassih R et al (2008) The role of sperm proteasomes during sperm aster formation and early zygote development: implications for fertilization failure in humans. Hum Reprod 23:573–580PubMedCrossRefGoogle Scholar
  231. Razavi S, Nasr-Esfahani MH, Mardani M et al (2003) Effect of human sperm chromatin anomalies on fertilization outcome post-ICSI. Andrologia 35:238–243PubMedCrossRefGoogle Scholar
  232. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093PubMedCrossRefGoogle Scholar
  233. Rousseau F, Bonaventure J, Legeai-Mallet L et al (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252–254PubMedCrossRefGoogle Scholar
  234. Rousseaux S, Caron C, Govin J et al (2005) Establishment of male-specific epigenetic information. Gene 345:139–153PubMedCrossRefGoogle Scholar
  235. Rousseaux S, Reynoird N, Escoffier E et al (2008) Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod Biomed Online 16:492–503PubMedCrossRefGoogle Scholar
  236. Royere D, Hamamah S, Nicolle JC et al (1988) Freezing and thawing alter chromatin stability of ejaculated human spermatozoa: fluorescence acridine orange staining and Feulgen-DNA cytophotometric studies. Gamete Res 21:51–57PubMedCrossRefGoogle Scholar
  237. Rubes J, Selevan SG, Evenson DP et al (2005) Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 20:2776–2783PubMedCrossRefGoogle Scholar
  238. Rubio C, Buendía P, Rodrigo L et al (2009) Prognostic factors for preimplantation genetic screening in repeated pregnancy loss. Reprod Biomed Online 18:687–693PubMedCrossRefGoogle Scholar
  239. Rufas O, Fisch B, Seligman J et al (1991) Thiol status in human sperm. Mol Reprod Dev 29:282–288PubMedCrossRefGoogle Scholar
  240. Said TM, Agarwal A, Sharma RK et al (2005) Impact of sperm morphology on DNA damage caused by oxidative stress induced by beta-nicotinamide adenine dinucleotide phosphate. Fertil Steril 83:95–103PubMedCrossRefGoogle Scholar
  241. Said T, Agarwal A, Grunewald S et al (2006) Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model. Biol Reprod 74:530–537PubMedCrossRefGoogle Scholar
  242. Said TM, Agarwal A, Zborowski M et al (2008) Utility of magnetic cell separation as a molecular sperm preparation technique. J Androl 29:134–142PubMedCrossRefGoogle Scholar
  243. Sakkas D, Urner F, Bianchi PG et al (1996) Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum Reprod 11:837–843PubMedCrossRefGoogle Scholar
  244. Sakkas D, Manicardi GC, Tomlinson M et al (2000) The use of two density gradient centrifugation techniques and the swim-up method to separate spermatozoa with chromatin and nuclear DNA anomalies. Hum Reprod 15:1112–1116PubMedCrossRefGoogle Scholar
  245. Saowaros W, Panyim S (1979) The formation of disulfide bonds in human protamines during sperm maturation. Experientia 35:191–192PubMedCrossRefGoogle Scholar
  246. Sarrate Z, Blanco J, Anton E et al (2005) FISH studies of chromosome abnormalities in germ cells and its relevance in reproductive counseling. Asian J Androl 7:227–236PubMedCrossRefGoogle Scholar
  247. Sautière P, Martinage A, Bélaiche D et al (1988) Comparison of the amino acid sequences of human protamines HP2 and HP3 and of intermediate basic nuclear proteins HPS1 and HPS2. Structural evidence that HPS1 and HPS2 are pro-protamines. J Biol Chem 263:11059–11062PubMedGoogle Scholar
  248. Schmid TE, Eskenazi B, Baumgartner A et al (2007) The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod 221:180–187Google Scholar
  249. Seli E, Sakkas D (2005) Spermatozoal nuclear determinants of reproductive outcome: implications for ART. Hum Reprod Update 11:337–349PubMedCrossRefGoogle Scholar
  250. Seli E, Gardner DK, Schoolcraft WB et al (2004) Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril 82:378–383PubMedCrossRefGoogle Scholar
  251. Shaman JA, Yamauchi Y, Ward WS (2007) Function of the sperm nuclear matrix. Arch Androl 53:135–140PubMedCrossRefGoogle Scholar
  252. Shirley CR, Hayashi S, Mounsey S et al (2004) Abnormalities and reduced reproductive potential of sperm from Tnp1- and Tnp2-null double mutant mice. Biol Reprod 71:1220–1229PubMedCrossRefGoogle Scholar
  253. Sigman M, Baazeem A, Zini A (2009) Semen analysis and sperm function assays: what do they mean? Semin Reprod Med 27:115–123PubMedCrossRefGoogle Scholar
  254. Silvestroni L, Frajese G, Fabrizio M (1976) Histones instead of protamines in terminal germ cells of infertile, oligospermic men. Fertil Steril 27:1428–1437PubMedGoogle Scholar
  255. Singh NP, Danner DB, Tice RR et al (1989) Abundant alkali-sensitive sites in DNA of human and mouse sperm. Exp Cell Res 184:461–470PubMedCrossRefGoogle Scholar
  256. Singh NP, Muller CH, Berger RE (2003) Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril 80:1420–1430PubMedCrossRefGoogle Scholar
  257. Singleton S, Zalensky A, Doncel GF et al (2007) Testis/sperm-specific histone 2B in the sperm of donors and subfertile patients: variability and relation to chromatin packaging. Hum Reprod 22:743–750PubMedCrossRefGoogle Scholar
  258. Skakkebaek NE, Jørgensen N, Main KM (2006) Is human fecundity declining? Int J Androl 29:2–11PubMedCrossRefGoogle Scholar
  259. Smith R, Kaune H, Parodi D et al (2006) Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod 21:986–993PubMedCrossRefGoogle Scholar
  260. Soares SR, Melo MA (2008) Cigarette smoking and reproductive function. Curr Opin Obstet Gynecol 20:281–291PubMedCrossRefGoogle Scholar
  261. Sonne SB, Kristensen DM, Novotny GW et al (2008) Testicular dysgenesis syndrome and the origin of carcinoma in situ testis. Int J Androl 31:275–287PubMedCrossRefGoogle Scholar
  262. Sotolongo B, Lino E, Ward WS (2003) Ability of hamster spermatozoa to digest their own DNA. Biol Reprod 69:2029–2035PubMedCrossRefGoogle Scholar
  263. Spano M, Kolstad AH, Larsen SB et al (1998) The applicability of the flow cytometric sperm chromatin structure assay in epidemiological studies. Hum Reprod 13:2495–2505PubMedCrossRefGoogle Scholar
  264. Steger K, Fink L, Failing K et al (2003) Decreased protamine-1 transcript levels in testes from infertile men. Mol Hum Reprod 9:331–336PubMedCrossRefGoogle Scholar
  265. Suganuma R, Yanagimachi R, Meistrich ML (2005) Decline in fertility of mouse sperm with abnormal chromatin during epididymal passage as revealed by ICSI. Hum Reprod 20:3101–3108PubMedCrossRefGoogle Scholar
  266. Sukcharoen N (1995) The effect of discontinuous Percoll gradient centrifugation on sperm morphology and nuclear DNA normality. J Med Assoc Thai 78:22–29PubMedGoogle Scholar
  267. Sun JG, Jurisicova A, Casper RF (1997) Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod 56:602–607PubMedCrossRefGoogle Scholar
  268. Szczygiel MA, Ward WS (2002) Combination of dithiothreitol and detergent treatment of spermatozoa causes paternal chromosomal damage. Biol Reprod 67:1532–1537PubMedCrossRefGoogle Scholar
  269. Tarozzi N, Nadalini M, Stronati A et al (2009) Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online 18:486–495PubMedCrossRefGoogle Scholar
  270. Tatsuta T, Model K, Langer T (2005) Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell 16:248–259PubMedCrossRefGoogle Scholar
  271. Tavalaee M, Razavi S, Nasr-Esfahani MH (2009) Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil Steril 91:1119–1126PubMedCrossRefGoogle Scholar
  272. Tesarik J, Greco E, Mendoza C (2004) Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod 19:611–615PubMedCrossRefGoogle Scholar
  273. Thompson WE, Ramalho-Santos J, Sutovsky P (2003) Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol Reprod 69:254–260PubMedCrossRefGoogle Scholar
  274. Thompson-Cree ME, McClure N, Donnelly ET et al (2003) Effects of cryopreservation on testicular sperm nuclear DNA fragmentation and its relationship with assisted conception outcome following ICSI with testicular spermatozoa. Reprod Biomed Online 7:449–455PubMedCrossRefGoogle Scholar
  275. Tomlinson MJ, Moffatt O, Manicardi GC et al (2001) Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum Reprod 16:2160–2165PubMedCrossRefGoogle Scholar
  276. Tomsu M, Sharma V, Miller D (2002) Embryo quality and IVF treatment outcomes may correlate with different sperm comet assay parameters. Hum Reprod 17:1856–1862PubMedCrossRefGoogle Scholar
  277. Torregrosa N, Domínguez-Fandos D, Camejo MI et al (2006) Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum Reprod 21:2084–2089PubMedCrossRefGoogle Scholar
  278. Trasler JM (2009) Epigenetics in spermatogenesis. Mol Cell Endocrinol 306:33–36PubMedCrossRefGoogle Scholar
  279. Tremellen K (2008) Oxidative stress and male infertility–a clinical perspective. Hum Reprod Update 14:243–258PubMedCrossRefGoogle Scholar
  280. Tremellen K, Miari G, Froiland D, Thompson J (2007) A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. Aust N Z J Obstet Gynaecol 47:216–221PubMedCrossRefGoogle Scholar
  281. Tunc O, Tremellen K (2009) Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet 26:537–544PubMedCrossRefGoogle Scholar
  282. Tunc O, Thompson J, Tremellen K (2009) Improvement in sperm DNA quality using an oral antioxidant therapy. Reprod Biomed Online 18:761–768PubMedCrossRefGoogle Scholar
  283. Ubaldi F, Rienzi L (2008) Morphological selection of gametes. Placenta 29:115–120PubMedCrossRefGoogle Scholar
  284. Van den Bergh M, Revelard P, Bertrand E et al (1997) Glass wool column filtration, an advantageous way of preparing semen samples for intracytoplasmic sperm injection: an auto-controlled randomized study. Hum Reprod 12:509–513PubMedCrossRefGoogle Scholar
  285. van der Heijden GW, Ramos L, Baart EB et al (2008) Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev Biol 8:34PubMedCrossRefGoogle Scholar
  286. Velez de la Calle JF, Muller A, Walschaerts M et al (2008) Sperm deoxyribonucleic acid fragmentation as assessed by the sperm chromatin dispersion test in assisted reproductive technology programs: results of a large prospective multicenter study. Fertil Steril 90(2):1792–1799PubMedCrossRefGoogle Scholar
  287. Verona RI, Mann MR, Bartolomei MS (2003) Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol 19:237–259PubMedCrossRefGoogle Scholar
  288. Vilfan ID, Conwell CC, Hud NV (2004) Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem 279:20088–20095PubMedCrossRefGoogle Scholar
  289. Virant-Klun I, Tomazevic T, Meden-Vrtovec H (2002) Sperm single-stranded DNA, detected by acridine orange staining, reduces fertilization and quality of ICSI-derived embryos. J Assist Reprod Genet 19:319–328PubMedCrossRefGoogle Scholar
  290. Virro MR, Larson-Cook KL, Evenson DP (2004) Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 81:1289–1295PubMedCrossRefGoogle Scholar
  291. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300PubMedCrossRefGoogle Scholar
  292. Wong A, Chuan SS, Patton WC et al (2008) Addition of eosin to the aniline blue assay to enhance detection of immature sperm histones. Fertil Steril 90:1999–2002PubMedCrossRefGoogle Scholar
  293. Wu TF, Chu DS (2008) Sperm chromatin: fertile grounds for proteomic discovery of clinical tools. Mol Cell Proteomics 7:1876–1886PubMedCrossRefGoogle Scholar
  294. Wykes SM, Krawetz SA (2003) The structural organization of sperm chromatin. J Biol Chem 278:29471–29477PubMedCrossRefGoogle Scholar
  295. Wyrobek AJ, Eskenazi B, Young S (2006) Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci USA 103:9601–9606PubMedCrossRefGoogle Scholar
  296. Yamauchi Y, Shaman JA, Ward WS (2007) Topoisomerase II-mediated breaks in spermatozoa cause the specific degradation of paternal DNA in fertilized oocytes. Biol Reprod 76:666–672PubMedCrossRefGoogle Scholar
  297. Yelick PC, Balhorn R, Johnson PA et al (1987) Mouse protamine 2 is synthesized as a precursor whereas mouse protamine 1 is not. Mol Cell Biol 7:2173–2179PubMedGoogle Scholar
  298. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340PubMedCrossRefGoogle Scholar
  299. Yoon SR, Qin J, Glaser RL et al (2009) The ups and downs of mutation frequencies during aging can account for the apert syndrome paternal age effect. PLoS Genet 5:e1000558PubMedCrossRefGoogle Scholar
  300. Yoshii T, Kuji N, Komatsu S et al (2005) Fine resolution of human sperm nucleoproteins by two-dimensional electrophoresis. Mol Hum Reprod 11:677–681PubMedCrossRefGoogle Scholar
  301. Young KE, Robbins WA, Xun L et al (2003) Evaluation of chromosome breakage and DNA integrity in sperm: an investigation of remote semen collection conditions. J Androl 24:853–861PubMedGoogle Scholar
  302. Zalenskaya IA, Zalensky AO (2002) Telomeres in mammalian male germline cells. Int Rev Cytol 218:37–67PubMedCrossRefGoogle Scholar
  303. Zalenskaya IA, Bradbury EM, Zalensky AO (2000) Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun 279:213–218PubMedCrossRefGoogle Scholar
  304. Zalensky AO, Allen MJ, Kobayashi A et al (1995) Well-defined genome architecture in the human sperm nucleus. Chromosoma 103:577–590PubMedCrossRefGoogle Scholar
  305. Zalensky AO, Siino JS, Gineitis AA et al (2002) Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J Biol Chem 277:43474–43480PubMedCrossRefGoogle Scholar
  306. Zhao C, Huo R, Wang FQ et al (2007) Identification of several proteins involved in regulation of sperm motility by proteomic analysis. Fertil Steril 87:436–438PubMedCrossRefGoogle Scholar
  307. Zini A, Sigman M (2009) Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl 30:219–229PubMedCrossRefGoogle Scholar
  308. Zini A, Kamal KM, Phang D (2001a) Free thiols in human spermatozoa: correlation with sperm DNA integrity. Urology 58:80–84PubMedCrossRefGoogle Scholar
  309. Zini A, Bielecki R, Phang D, Zenzes MT (2001b) Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril 75:674–687PubMedCrossRefGoogle Scholar
  310. Zini A, Meriano J, Kader K et al (2005a) Potential adverse effect of sperm DNA damage on embryo quality after ICSI. Hum Reprod 20:3476–3480PubMedCrossRefGoogle Scholar
  311. Zini A, Blumenfeld A, Libman J, Willis J (2005b) Beneficial effect of microsurgical varicocelectomy on human sperm DNA integrity. Hum Reprod 20:1018–1021PubMedCrossRefGoogle Scholar
  312. Zini A, Boman JM, Belzile E, Ciampi A (2008) Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod 23:2663–2668PubMedCrossRefGoogle Scholar
  313. Zini A, San Gabriel M, Baazeem A (2009) Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet 26:427–432PubMedCrossRefGoogle Scholar
  314. Zubkova EV, Wade M, Robaire B (2005) Changes in spermatozoal chromatin packaging and susceptibility to oxidative challenge during aging. Fertil Steril 84:1191–1198PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Human Genetics Research Group, IDIBAPSUniversity of BarcelonaBarcelonaSpain
  2. 2.Biochemistry and Molecular Genetics ServiceHospital Clínic i ProvincialBarcelonaSpain

Personalised recommendations