Nuclear Lamins in Mammalian Spermatogenesis

Chapter
Part of the Epigenetics and Human Health book series (EHH)

Abstract

Nuclear lamins are important structural protein components of the nuclear envelope. The composition and properties of the nuclear lamina of spermatogenic cells differ significantly from those of somatic cells of the same species. Mammalian spermatogenic cells selectively express short lamin isoforms showing several peculiarities. In this chapter, we summarize what is known about germ line-specific lamins and discuss their possible relevance for germ cell differentiation and fertility.

Keywords

Lamins Mammals Meiosis Spermatogenesis Spermiogenesis 

Notes

Acknowledgments

Supported by the Priority Programme 1384 of the DFG, the Graduate School “Organogenesis,” and the Elitenetzwerk Bayern.

References

  1. Aebi U, Cohn J, Buhle L, Gerace L (1986) The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323:560–564PubMedCrossRefGoogle Scholar
  2. Alsheimer M (2009) The dance floor of meiosis: evolutionary conservation of nuclear envelope attachment and dynamics of meiotic telomeres. Genome Dyn 5:81–93PubMedCrossRefGoogle Scholar
  3. Alsheimer M, Benavente R (1996) Change of karyoskeleton during mammalian spermatogenesis: expression pattern of nuclear lamin C2 and its regulation. Exp Cell Res 228:181–188PubMedCrossRefGoogle Scholar
  4. Alsheimer M, Fecher E, Benavente R (1998) Nuclear envelope remodelling during rat spermiogenesis: distribution and expression pattern of LAP2/thymopoietins. J Cell Sci 111:2227–2234PubMedGoogle Scholar
  5. Alsheimer M, von Glasenapp E, Hock R, Benavente R (1999) Architecture of the nuclear periphery of rat pachytene spermatocytes: distribution of nuclear envelope proteins in relation to synaptonemal complex attachment sites. Mol Biol Cell 10:1235–1245PubMedGoogle Scholar
  6. Alsheimer M, von Glasenapp E, Schnölzer M, Heid H, Benavente R (2000) Meiotic lamin C2: the unique amino-terminal hexapeptide GNAEGR is essential for nuclear envelope association. Proc Natl Acad Sci USA 97:13120–13125PubMedCrossRefGoogle Scholar
  7. Alsheimer M, Liebe B, Sewell L, Stewart CL, Scherthan H, Benavente R (2004) Disruption of spermatogenesis in mice lacking A-type lamins. J Cell Sci 117:1173–1178PubMedCrossRefGoogle Scholar
  8. Benavente R (ed) (2004) Molecular aspects of mouse spermatogenesis. Karger, BaselGoogle Scholar
  9. Benavente R, Krohne G (1985) Change of karyoskeleton during spermatogenesis of Xenopus: expression of lamin LIV, a nuclear lamina protein specific for the male germ line. Proc Natl Acad Sci USA 82:6176–6180PubMedCrossRefGoogle Scholar
  10. Benavente R, Volff JN (eds) (2009) Meiosis. Book series: genome dynamics, vol 5. Karger, BaselGoogle Scholar
  11. Broers JL, Machiels BM, van Eys GJ, Kuijpers HJ, Manders EM, van Driel R, Remaekers FC (1999) Dynamics of the nuclear lamina as monitored by GFP-tagged A-type lamins. J Cell Sci 112:3463–3475PubMedGoogle Scholar
  12. Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17:626–638PubMedCrossRefGoogle Scholar
  13. Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22:832–853PubMedCrossRefGoogle Scholar
  14. Furukawa K, Hotta Y (1993) cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J 12:97–106PubMedGoogle Scholar
  15. Furukawa K, Inagaki H, Hotta Y (1994) Identification and cloning of an mRNA coding for a germ cell-specific A-type lamin in mice. Exp Cell Res 212:426–430PubMedCrossRefGoogle Scholar
  16. Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL (2005) The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6:21–31PubMedCrossRefGoogle Scholar
  17. Hermo L, Pelletier RM, Cyr DG, Smith CE (2010a) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech. doi:10.1002/jemt.20783Google Scholar
  18. Hermo L, Pelletier RM, Cyr DG, Smith CE (2010b) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: Changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech doi:10.1002/jemt.20787Google Scholar
  19. Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism and integration into functionally distinct intracellular scaffolds. Annu Rev Biochem 73:749–789PubMedCrossRefGoogle Scholar
  20. Jahn D, Schramm S, Benavente R, Alsheimer M (2010) Dynamic properties of meiosis-specific lamin C2 and its impact on nuclear envelope integrity. Nucleus 1:273–228PubMedCrossRefGoogle Scholar
  21. Krohne G (1998) Lamin assembly in vivo. Subcell Biochem 31:563–586PubMedGoogle Scholar
  22. McKeon FD, Kirschner MW, Caput D (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319:463–468PubMedCrossRefGoogle Scholar
  23. Mylonis I, Drsou V, Brancorsini S, Nikolakaki E, Sassone-Corsi P, Giannakouros T (2004) Temporal association of protamine 1 with the inner nuclear membrane protein lamin B receptor during spermiogenesis. J Biol Chem 279:11626–11631PubMedCrossRefGoogle Scholar
  24. Prüfert K, Alsheimer M, Benavente R, Krohne G (2005) The myristoylation site of meiotic lamin C2 promotes local nuclear membrane growth and the formation of intranuclear membranes in somatic cultured cells. Eur J Cell Biol 84:637–646PubMedCrossRefGoogle Scholar
  25. Schirmer EC, Foisner R (2007) Proteins that associate with lamins: many faces, many functions. Exp Cell Res 313:2167–2179PubMedCrossRefGoogle Scholar
  26. Schmitt J, Benavente R, Hodzic D, Höög C, Stewart CL, Alsheimer M (2007) Transmembrane protein Sun2 is involved in tethering mammalian meiotic telomeres to the nuclear envelope. Proc Natl Acad Sci USA 104:7426–7431PubMedCrossRefGoogle Scholar
  27. Schütz W, Alsheimer M, Öllinger R, Benavente R (2005a) Nuclear envelope remodelling during mouse spermiogenesis: postmeiotic expression and redistribution of germ line lamin B3. Exp Cell Res 307:285–291PubMedCrossRefGoogle Scholar
  28. Schütz W, Benavente R, Alsheimer M (2005b) Dynamic properties of germ line-specific lamin B3: the role of the shortened rod domain. Eur J Cell Biol 84:649–662PubMedCrossRefGoogle Scholar
  29. Smith A, Benavente R (1992) Identification of a short nuclear lamin protein selectively expressed during meiotic stages of rat spermatogenesis. Differentiation 52:557–563CrossRefGoogle Scholar
  30. Stewart CL, Roux KJ, Burke B (2007) Blurring the boundary: the nuclear envelope extends its reach. Science 318:1408–1412PubMedCrossRefGoogle Scholar
  31. Stick R (1988) cDNA cloning of the developmentally regulated lamin LIII of Xenopus laevis. EMBO J 7:189–197Google Scholar
  32. Stick R, Schwarz H (1982) The disappearance of the nuclear lamina during spermatogenesis: an electron microscopic and immunofluorescence study. Cell Differ 11:235–243PubMedCrossRefGoogle Scholar
  33. Stuurman N, Heinz S, Aebi U (1998) Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 122:42–66PubMedCrossRefGoogle Scholar
  34. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–919PubMedCrossRefGoogle Scholar
  35. Vester B, Smith A, Krohne G, Benavente R (1993) Presence of a nuclear lamina in pachytene spermatocytes of the rat. J Cell Sci 104:557–567PubMedGoogle Scholar
  36. von Glasenapp E, Benavente R (2000) Fate of meiotic lamin C2 in rat spermatocytes cultured in the presence of okadaic acid. Chromosoma 109:117–122CrossRefGoogle Scholar
  37. von Moeller F, Barendziak T, Apte K, Goldberg MW, Stick R (2010) Molecular characterization of Xenopus lamin LIV reveals differences in the lamin composition of sperms in amphibians and mammals. Nucleus 1:1–11Google Scholar
  38. Zickler D, Kleckner N (1998) The leptotene–zygotene transition of meiosis. Annu Rev Genet 32:619–697PubMedCrossRefGoogle Scholar
  39. Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Cell and Developmental Biology, BiocenterUniversity of WürzburgWürzburgGermany

Personalised recommendations