Advertisement

Bio-inspired Architecture for Active Sensorimotor Localization

  • Thomas Reineking
  • Johannes Wolter
  • Konrad Gadzicki
  • Christoph Zetzsche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6222)

Abstract

Determining one’s position within the environment is a basic feature of spatial behavior and spatial cognition. This task is of inherently sensorimotor nature in that it results from a combination of sensory features and motor actions, where the latter comprise exploratory movements to different positions in the environment. Biological agents achieve this in a robust and effortless fashion, which prompted us to investigate a bio-inspired architecture to study the localization process of an artificial agent which operates in virtual spatial environments. The spatial representation in this architecture is based on sensorimotor features that comprise sensory sensory features as well as motor actions. It is hierarchically organized and its structure can be learned in an unsupervised fashion by an appropriate clustering rule. In addition, the architecture has a temporal belief update mechanism which explicitly utilizes the statistical correlations of actions and locations. The architecture is hybrid in integrating bottom-up processing of sensorimotor features with top-down reasoning which is able to select optimal motor actions based on the principle of maximum information gain. The architecture operates on two sensorimotor levels, a macro-level, which controls the movements of the agent in space, and on a micro-level, which controls its eye movements. As a result, the virtual mobile agent is able to localize itself within an environment using a minimum number of exploratory actions.

Keywords

Spatial Representation Spatial Cognition Hierarchical Representation Spatial Environment Sensorimotor Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aloimonos, Y. (ed.): Special Issue: Purposive, Qualitative and Active Vision, Image Understanding, vol. 56 (1992)Google Scholar
  2. 2.
    Ballard, D.: Animate vision. Artificial Intelligence 48, 57–86 (1991)CrossRefGoogle Scholar
  3. 3.
    Byun, Y.T., Kuipers, B.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. IEEE Journal of Robotics and Autonomous Systems 8, 47–63 (1991)CrossRefGoogle Scholar
  4. 4.
    Delmotte, F., Smets, P.: Target identification based on the transferable belief model interpretation of Dempster-Shafer model. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 34(4), 457–471 (2004)CrossRefGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: On the unicity of Dempster’s rule of combination. International Journal of Intelligent Systems 1(2), 133–142 (1986)zbMATHCrossRefGoogle Scholar
  6. 6.
    Elfes, A.: Sonar-based real-world mapping and navigation. IEEE Journal of robotics and automation 3(3), 249–265 (1987)CrossRefGoogle Scholar
  7. 7.
    Foo, P., Warren, W.H., Duchon, A., Tarr, M.J.: Do humans integrate routes into a cognitive map? map- versus landmark-based navigation of novel shortcuts. Journal of Experimental Psychology 31(2), 195–215 (2005)Google Scholar
  8. 8.
    Frank, L., Brown, E., Wilson, M.: Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27(1), 169–178 (2000)CrossRefGoogle Scholar
  9. 9.
    Gadzicki, K.: Hierarchical clustering of sensorimotor features. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS (LNAI), vol. 5803, pp. 331–338. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Gibson, J.J.: The ecological approach to visual perception. Houghton Mifflin, Boston (1979)Google Scholar
  11. 11.
    Gillner, S., Mallot, H.A.: Navigation and acquisition of spatial knowledge in a virtual maze. Journal of Cognitive Neuroscience 10(4), 445–463 (1998)CrossRefGoogle Scholar
  12. 12.
    Gordon, J., Shortliffe, E.H.: A method for managing evidential reasoning in a hierarchical hypothesis space. Artif. Intell. 26(3), 323–357 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hirtle, S.C., Jonides, J.: Evidence of hierarchies in cognitive maps. Memory and Cognition 13(3), 208–217 (1985)Google Scholar
  14. 14.
    Hommel, B., Muesseler, J., Aschersleben, G., Prinz, W.: The theory of event coding (tec): A framework for perception and action planning. Behavioral and Brain Sciences 24, 849–878 (2001)CrossRefGoogle Scholar
  15. 15.
    Kalman, R.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(1), 35–45 (1960)Google Scholar
  16. 16.
    Kohonen, T.: Self-organizing maps. Springer series in information sciences, 3rd edn., vol. 30. Springer, Heidelberg (2001)Google Scholar
  17. 17.
    Kuipers, B.: The map in the head metaphor. Environment and Behavior 14(2), 202–220 (1982)CrossRefGoogle Scholar
  18. 18.
    Kuipers, B.: The spatial semantic hierarchy. Artificial Intelligence 119, 191–233 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Mataric, M.: Integration of representation into goal-driven behavior-basedrobots. IEEE Transactions on Robotics and Automation 8(3), 304–312 (1992)CrossRefGoogle Scholar
  20. 20.
    Moore, T.: Shape representations and visual guidance of saccadic eye movements. Science 285(5435), 1914 (1999)CrossRefGoogle Scholar
  21. 21.
    Nene, S., Nayar, S., Murase, H.: Columbia object image library (COIL-20). Tech. rep., Dept. Comput. Sci., Columbia Univ., New York (1996)Google Scholar
  22. 22.
    O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Clarendon Press, Oxford (1978)Google Scholar
  23. 23.
    O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 24, 939–973 (2001)CrossRefGoogle Scholar
  24. 24.
    Orponen, P.: Dempster’s rule of combination is #P-complete. Artificial Intelligence 44(1-2), 245–253 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Pal, N., Bezdek, J., Hemasinha, R.: Uncertainty measures for evidential reasoning II: A new measure of total uncertainty. International Journal of Approximate Reasoning 8(1), 1–16 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Prinz, W.: A common coding approach to perception and action, relationships between perception and action: current approaches edn., pp. 167–203. Springer, Berlin (1990)Google Scholar
  27. 27.
    Reineking, T.: Particle filtering in the Dempster-Shafer theory. International Journal of Approximate Reasoning (2010) (in revision) (submitted) (Febuary 17, 2009)Google Scholar
  28. 28.
    Reineking, T., Kohlhagen, C., Zetzsche, C.: Efficient wayfinding in hierarchically regionalized spatial environments. In: Freksa, C. (ed.) Spatial Cognition VI. LNCS (LNAI), vol. 5248, pp. 56–70. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Reineking, T., Schult, N., Hois, J.: Combining statistical and symbolic reasoning for active scene categorization. In: Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2009, Revised Selected Papers. Communications in Computer and Information Science. Springer, Heidelberg (2010) (in press)Google Scholar
  30. 30.
    Rizzolatti, G., Craighero, L.: The mirror-neuron system 27, 169–192 (2004)Google Scholar
  31. 31.
    Rizzolatti, G., Matelli, M.: Two different streams form the dorsal visual system: anatomy and functions. Experimental Brain Research 153(2), 146–157 (2003)CrossRefGoogle Scholar
  32. 32.
    Salton, G.: The SMART Retrieval System—Experiments in Automatic Document Processing. Prentice-Hall, Inc., Upper Saddle River (1971)Google Scholar
  33. 33.
    Schill, K.: Decision Support Systems with Adaptive Reasoning Strategies. In: Freksa, C., Jantzen, M., Valk, R. (eds.) Foundations of Computer Science. LNCS, vol. 1337, pp. 417–427. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  34. 34.
    Schill, K., Umkehrer, E., Beinlich, S., Krieger, G., Zetzsche, C.: Scene analysis with saccadic eye movements: Top-down and bottom-up modeling. Journal of Electronic Imaging 10(1), 152–160 (2001)CrossRefGoogle Scholar
  35. 35.
    Schill, K., Zetzsche, C., Hois, J.: A belief-based architecture for scene analysis: From sensorimotor features to knowledge and ontology. Fuzzy Sets and Systems 160(10), 1507–1516 (2009)CrossRefGoogle Scholar
  36. 36.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  37. 37.
    Siegel, A., White, S.: The development of spatial representations of large-scale environments. Advances in child development and behavior 10, 9 (1975)Google Scholar
  38. 38.
    Smets, P.: Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning 9, 1–35 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Tanimoto, T.: IBM interal report. Tech. rep., IBM (November 1957)Google Scholar
  40. 40.
    Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artificial Intelligence 128(1-2), 99–141 (2001)zbMATHCrossRefGoogle Scholar
  41. 41.
    Thrun, S.: Learning occupancy grids with forward sensor models. Autonomous Robots 15, 111–127 (2003)CrossRefGoogle Scholar
  42. 42.
    Tversky, B.: Distortions in cognitive maps. Geoforum 23(2), 131–138 (1992)CrossRefGoogle Scholar
  43. 43.
    Wang, R.F., Spelke, E.S.: Updating egocentric representations in human navigation. Cognition 77, 215–250 (2000)CrossRefGoogle Scholar
  44. 44.
    Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301), 236–244 (1963)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Wiener, J., Mallot, H.: ’Fine-to-coarse’ route planning and navigation in regionalized environments. Spatial Cognition and Computation 3(4), 331–358 (2003)CrossRefGoogle Scholar
  46. 46.
    Wiener, J., Mallot, H.: ’Fine-to-coarse’ route planning and navigation in regionalized environments. Spatial Cognition and Computation 3(4), 331–358 (2003)CrossRefGoogle Scholar
  47. 47.
    Yarbus, A.L.: Eye Movements and Vision. Plenum Press, New York (1967)Google Scholar
  48. 48.
    Zetzsche, C., Galbraith, C., Wolter, J., Schill, K.: Navigation based on a sensorimotor representation: a virtual reality study. In: Rogowitz, B.E., Pappas, T.N., Daly, S.J. (eds.) Proceedings of SPIE. Human Vision and Electronic Imaging XII, February 2007, vol. 6492 (2007)Google Scholar
  49. 49.
    Zetzsche, C., Krieger, G.: Nonlinear operators and higher-order statistics in image processing and analysis. In: Proc. ISPA 2001 - 2nd International Symposium on Image and Signal Processing and Analysis, pp. 119–124 (2001)Google Scholar
  50. 50.
    Zetzsche, C., Wolter, J., Galbraith, C., Schill, K.: Representation of space: image-like or sensorimotor. Spatial Vision 22(5), 409–424 (2009)CrossRefGoogle Scholar
  51. 51.
    Zetzsche, C., Wolter, J., Schill, K.: Sensorimotor representation and knowledge-based reasoning for spatial exploration and localisation. Cognitive Processing 9, 283–297 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thomas Reineking
    • 1
  • Johannes Wolter
    • 1
  • Konrad Gadzicki
    • 1
  • Christoph Zetzsche
    • 1
  1. 1.Cognitive NeuroinformaticsUniversity of BremenBremenGermany

Personalised recommendations