Architecture, Abstractions, and Algorithms for Controlling Large Teams of Robots: Experimental Testbed and Results

  • Nathan Michael
  • Jonathan Fink
  • Savvas Loizou
  • Vijay Kumar
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 66)

Summary

We describe the architecture, algorithms, and experimental testbed for the deployment of large numbers of cooperating robots, and applications to tasks like manipulation and transportation. The coordination between robots is completely decentralized to enable scaling up to large numbers of robots. There is no labeling or identification of robots and all robots (and their software) are identical allowing robustness to failures, ease of programming, and modularity enabling the addition or deletion of robots from the team. Our approach requires minimal communication and sensing and the proposed controllers are based only on local information. Moreover, our architecture facilitates asymmetric communication from one or more supervisory agents that can broadcast information to all robots and close the loop by acquiring abstract, high level information related to the supervised robots. We discuss the hardware and software implementation, the architecture, and present recent experimental results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sukhatme, G.S., Dhariwal, A., Zhang, B., Oberg, C., Stauffer, B., Caron, D.A.: Design and development of a wireless robotic networked aquatic microbial observing system. Environmental Engineering Science 24(2), 205–215 (2007)CrossRefGoogle Scholar
  2. 2.
    Rybski, P.E., Stoeter, S.A., Erickson, M.D., Gini, M., Hougen, D.F., Papanikolopoulos, N.: A team of robotic agents for surveillance. In: Proc. of Int. Conf. on Autonomous Agents, Barcelona, Spain, June 2000, pp. 9–16 (2000)Google Scholar
  3. 3.
    Howard, A., Parker, L.E., Sukhatme, G.S.: Experiments with a large heterogeneous mobile robot team: Exploration, mapping, deployment and detection. The Int. Journal of Robotics Research 25(5-6), 431–447 (2006)CrossRefGoogle Scholar
  4. 4.
    Fox, D., Ko, J., Konolige, K., Limketkai, B., Schultz, D., Stewart, B.: Distributed multirobot exploration and mapping. Proc. of the IEEE 94(7), 1325–1339 (2006)CrossRefGoogle Scholar
  5. 5.
    Corke, P., Peterson, R., Rus, D.: Networked Robots: Flying Robot Navigation using a Sensor Net. Springer Tracts in Advanced Robotics, vol. 15, pp. 234–243. Springer, New York (2005)Google Scholar
  6. 6.
    Kumar, V., Rus, D., Singh, S.: Robot and sensor networks for first responders. IEEE Pervasive Computing 3(4), 24–33 (2004)CrossRefGoogle Scholar
  7. 7.
    Balch, T., Parker, L.E. (eds.): Robot Teams: From Diversity to Polymorphism. A K Peters, Ltd., Wellesley (2002)Google Scholar
  8. 8.
    Beard, R.W., Lawton, J., Hadaegh, F.Y.: A coordination architecture for spacecraft formation control. IEEE Transactions on Control Systems Technology 9(6), 777–790 (2001)CrossRefGoogle Scholar
  9. 9.
    Parker, L.E.: Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE Transactions on Robotics and Automation 14(2), 220–240 (1998)CrossRefGoogle Scholar
  10. 10.
    Mackenzie, D.C., Arkin, R.C., Cameron, J.M.: Multiagent mission specification and execution. Autonomous Robots 4, 29–52 (1997)CrossRefGoogle Scholar
  11. 11.
    Makarenko, A., Brooks, A., Williams, S., Durrant-Whyte, H., Grocholsky, B.: A decentralized architecture for active sensor networks. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, New Orleans, LA, vol. 2, pp. 1097–1102 (2004)Google Scholar
  12. 12.
    Arkin, R.C.: Behavior Based Robotics. The MIT Press, Cambridge (1998)Google Scholar
  13. 13.
    Feddema, J.T., Schoenwald, D.: Decentralized control of cooperative robotic vehicles. In: Proc. of SPIE, vol. 4364, pp. 136–146 (September 2001)Google Scholar
  14. 14.
    Simmons, R.G., Singh, S., Hershberger, D., Ramos, J., Smith, T.: First Results in the Coordination of Heterogeneous Robots for Large-Scale Assembly. Lecture Notes in Control and Information Sciences, vol. 271, pp. 323–332. Springer, New York (2000)Google Scholar
  15. 15.
    Belta, C., Kumar, V.: Abstraction and control for groups of robots. IEEE Transactions on Robotics 20(5), 865–875 (2004)CrossRefGoogle Scholar
  16. 16.
    Chaimowicz, L., Michael, N., Kumar, V.: Controlling swarms of robots using interpolated implicit functions. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, April 2005, pp. 2487–2492 (2005)Google Scholar
  17. 17.
    Michael, N., Belta, C., Kumar, V.: Controlling three dimensional swarms of robots. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Orlando, FL, May 2006, pp. 964–969 (2006)Google Scholar
  18. 18.
    Julius, A., Halasz, A., Kumar, V., Pappas, G.J.: Finite state abstaction of a stochastic model of the lactose regulation system escherichia coli. In: Proc. of the IEEE Conference on Decision and Control, San Diego, CA, December 2006, pp. 19–24 (2006)Google Scholar
  19. 19.
    Koditschek, D.E., Rimon, E.: Robot navigation functions on manifolds with boundary. Advances in Applied Mathematics 11(4), 412–442 (1990)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Loizou, S.G., Kumar, V.: Weak input-to-state stability properties for navigation function based controllers. In: Proc. of the IEEE Conference on Decision and Control, San Diego, CA, pp. 6506–6511 (2006)Google Scholar
  21. 21.
    Loizou, S.G., Kumar, V.: Mixed initiative control of autonomous vehicles. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Rome, Italy, April 2007, pp. 1431–1436 (2007)Google Scholar
  22. 22.
    Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and distributed sensor systems. In: Proc. of the Int. Conf. on Advanced Robotics, Coimbra, Portugal, June 2003, pp. 317–323 (2003)Google Scholar
  23. 23.
    Michael, N., Fink, J., Kumar, V.: Controlling a team of ground robots via an aerial robot. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, San Diego, CA, October 2007, pp. 965–970 (2007)Google Scholar
  24. 24.
    Fink, J., Michael, N., Kumar, V.: Composition of vector fields for multi-robot manipulation via caging. In: Robotics: Science and Systems, Atlanta, GA (June 2007)Google Scholar
  25. 25.
    Hsieh, M.A., Kumar, V.: Pattern generation with multiple robots. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Orlando, FL, May 2006, pp. 2442–2447 (2006)Google Scholar
  26. 26.
    Hsieh, M.A., Loizou, S.G., Kumar, V.: Stabilization of multiple robots on stable orbits via local sensing. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Rome, Italy, April 2007, pp. 2312–2317 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nathan Michael
    • 1
  • Jonathan Fink
    • 1
  • Savvas Loizou
    • 1
  • Vijay Kumar
    • 1
  1. 1.University of PennsylvaniaPhiladelphia

Personalised recommendations