A Framework for Force and Visual Control of Robot Manipulators

  • Vincenzo Lippiello
  • Bruno Siciliano
  • Luigi Villani
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 66)

Abstract

A framework for force and visual control of robot manipulators in contact with a partially known environment is proposed. The environment is modelled as a rigid object of known geometry but of unknown and time-varying pose. An algorithm for online estimation of the object pose is adopted, based on visual data as well as on force measurements. This information is used by a force/position controller. The resulting control scheme has a inner/outer structure where the outer loop performs pose estimation and the inner loop is devoted to interaction control.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hosoda, K., Igarashi, K., Asada, M.: Adaptive hybrid control for visual and force servoing in an unknown environment. Robotics & Automation Magazine 5(4), 39–43 (1998)CrossRefGoogle Scholar
  2. 2.
    Nelson, B.J., Morrow, J.D., Khosla, P.K.: Improved force control through visual servoing. In: 1995 American Control Conf., pp. 380–386 (1995)Google Scholar
  3. 3.
    Baeten, J., Schutter, J.D.: Integrated Visual Servoing and Force Control. In: The Task Frame Approach, Springer, Heidelerg (2004)Google Scholar
  4. 4.
    Morel, G., Malis, E., Boudet, S.: Impedance based combination of visual and force control. In: 1998 IEEE Int. Conf. on Robotics and Aut., pp. 1743–1748 (1998)Google Scholar
  5. 5.
    Olsson, T., Johansson, R., Robertsson, A.: Flexible force-vision control for surface following using multiple cameras. In: 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and System, pp. 798–803 (2004)Google Scholar
  6. 6.
    Siciliano, B., Villani, L.: Robot Force Control. Kluwer Academic Publishers, Boston (1999)MATHGoogle Scholar
  7. 7.
    Yoshikawa, T., Sugie, T., Tanaka, M.: Dynamic hybrid position/force control of robot manipulators—Controller design and experiment. IEEE J. of Robotics and Automation 4, 699–705 (1988)CrossRefGoogle Scholar
  8. 8.
    Hogan, N.: Impedance control: An approach to manipulation, Parts I–III. ASME J. of Dynamic Systems, Measurement, and Control 107, 1–24 (1985)MATHCrossRefGoogle Scholar
  9. 9.
    Chiaverini, S., Sciavicco, L.: The parallel approach to force/position control of robotic manipulators. IEEE Trans. on Robotics and Automation 9, 361–373 (1993)CrossRefGoogle Scholar
  10. 10.
    Lippiello, V., Villani, L.: Managing redundant visual measurements for accurate pose tracking. Robotica 21, 511–519 (2003)CrossRefGoogle Scholar
  11. 11.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. on Robotics and Aut. 8(3), 313–326 (1996)CrossRefGoogle Scholar
  12. 12.
    Canudas de Wit, C., Siciliano, B., Bastin, G. (eds.): Theory of Robot Control. Springer, London (1996)MATHGoogle Scholar
  13. 13.
    Lippiello, V., Siciliano, B., Villani, L.: Position-based visual servoing in industrial multi-robot cells using a hybrid camera configuration. IEEE Trans. on Robotics, 73–86 (2007)Google Scholar
  14. 14.
    Lippiello, V., Siciliano, B., Villani, L.: A position-based visual impedance control for robot manipulators. In: 2007 IEEE Int. Conf. on Robotics and Automation, pp. 2068–2073 (2007)Google Scholar
  15. 15.
    Lippiello, V., Siciliano, B., Villani, L.: Robot force/position control with force and visual feedback. In: European Control Conference 2007, Kos, Greece (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vincenzo Lippiello
    • 1
  • Bruno Siciliano
    • 1
  • Luigi Villani
    • 1
  1. 1.PRISMA Lab, Dipartimento di Informatica e SistemisticaUniversità degli Studi di Napoli Federico IINapoliItaly

Personalised recommendations