Haptics for Robot-Assisted Minimally Invasive Surgery

  • A. M. Okamura
  • L. N. Verner
  • C. E. Reiley
  • M. Mahvash
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 66)

Abstract

Robot-assisted minimally invasive surgery (RMIS) holds great promise for improving the accuracy and dexterity of a surgeon while minimizing trauma to the patient. However, widespread clinical success with RMIS has been marginal and it is hypothesized by engineers and surgeons alike that the lack of haptic feedback presented to the surgeon is a limiting factor. The objective of our research is to acquire, display, and determine the utility of haptic information during RMIS. This overview paper examines the design, analysis, practicality, and effectiveness of various force estimation and display methods. In particular, we describe our experience in adding force feedback to an experimental version of the da Vinci surgical system, a commercially available teleoperated RMIS system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guthart, G., Salisbury, J.K.: The Intuitive Telesurgery System: Overview and application. In: IEEE Int. Conf. Rob. Aut., pp. 618–621 (2000)Google Scholar
  2. 2.
    Kitagawa, M., Bethea, B.T., Gott, V.L., Okamura, A.M.: Analysis of suture manipulation forces for teleoperation with force feedback. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 155–162. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Tang, L.W.: Robotically assisted video-enhanced endoscopic coronary artery bypass graft surgery. Angiology 52(2), 99–102 (2001)CrossRefGoogle Scholar
  4. 4.
    Xin, H., Zelek, J.S., Carnahan, H.: Laparoscopic surgery, perceptual limitations and force: A review. In: First Canadian Student Conference on Biomedical Computing, Kingston, Ontario, Canada, vol. 144 (2006)Google Scholar
  5. 5.
    Camarillo, D.B., Krummel, T.M., Salisbury, J.K.: Robotic technology in surgery: past, present, and future. Am. J. Surg. 188(4A), 2S–15S (2004)CrossRefGoogle Scholar
  6. 6.
    Mohr, F.W., Falk, V., Diegeler, A., Walther, T., Gummert, J.F., Bucerius, J., Jacobs, S., Autschbach, R.: Computer-enhanced “robotic” cardiac surgery: Experience in 148 patients. J. Thor. Cardio. Surg. 121(5), 842–853 (2001)CrossRefGoogle Scholar
  7. 7.
    Cavusoglu, M.C., Williams, W., Tendick, F., Sastry, S.S.: Robotics for telesurgery: Second generation berkeley/ucsf laparoscopic telesurgical workstation and looking towards the future applications. Ind. Rob. 30(1), 22–29 (2003)CrossRefGoogle Scholar
  8. 8.
    Okamura, A.M.: Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Rob. 31(6), 499–508 (2004)CrossRefGoogle Scholar
  9. 9.
    MacFarlane, M., Rosen, J., Hannaford, B., Pellegrini, C., Sinanan, M.: Force feedback grasper helps restore the sense of touch in minimally invasive surgery. Journal of Gastrointestinal Surgery 3(3), 278–285 (1999)CrossRefGoogle Scholar
  10. 10.
    Tholey, G., Desai, J.P., Castellanos, A.E.: Force feedback plays a significant role in minimally invasive surgery: results and analysis. Annals of Surgery 241, 102–109 (2005)Google Scholar
  11. 11.
    Deml, B., Ortmaier, T., Seibold, U.: The touch and feel in minimally invasive surgery. In: IEEE International Workshop on Haptic Audio Visual Environments and their Applications, pp. 33–38 (2005)Google Scholar
  12. 12.
    Ortmaier, T., Deml, B., Kuebler, B., Passig, G., Reintsema, D., Seibold, U.: Robot assisted force feedback surgery. In: Advances in Telerobotics. Springer Tracts in Advanced Robotics (STAR), pp. 341–358. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Wagner, C.R., Stylopoulos, N., Jackson, P.G., Howe, R.D.: The benefit of force feedback in surgery: Examination of blunt dissection. Presence: Teleoperators and Virtual Environments 16(3), 252–262 (2007)CrossRefGoogle Scholar
  14. 14.
    Rosen, J., Solazzo, M., Hannaford, B., Sinanan, M.: Objective evaluation of laparoscopic skills based on haptic information and tool/tissue interactions. Computer Aided Surgery 7(1), 49–61 (2002)CrossRefGoogle Scholar
  15. 15.
    Perreault, J.O., Cao, C.G.L.: Effects of vision and friction on haptic perception. Human Factors 48(3), 574–586 (2006)CrossRefGoogle Scholar
  16. 16.
    Hannaford, B.: A design framework for teleoperators with kinesthetic feedback. IEEE Transactions on Robotics and Automation 5(4), 426–434 (1989)CrossRefGoogle Scholar
  17. 17.
    Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Transactions on Robotics and Automation 9(5), 624–637 (1993)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Cavusoglu, M.C., Sherman, A., Tendick, F.: Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments. IEEE Transactions on Robotics and Automation 18(4), 641–647 (2002)CrossRefGoogle Scholar
  19. 19.
    Kuebler, B., Seibold, U., Hirzinger, G.: Development of actuated and sensor integrated forceps for minimally invasive robotic surgery. International Journal of Medical Robotics and Computer Assisted Surgery 1(3), 96–107 (2005)CrossRefGoogle Scholar
  20. 20.
    Dollar, A.M., Wagner, C.R., Howe, R.D.: Embedded sensors for biomimetic robotics via shape deposition manufacturing. In: 1st IEEE/RAS-EMBS Int. Conf. on Biomed. Rob. and Biomechatronics (BioRob), pp. 763–768 (2006)Google Scholar
  21. 21.
    Saha, S.: Appropriate degrees of freedom of force sensing in robot-assisted minimally invasive surgery. Master’s thesis, Dept. of Biomedical Eng., Johns Hopkins Univ. (2006)Google Scholar
  22. 22.
    Tavakoli, M., Patel, R.V., Moallem, M.: Haptic interaction in robot-assisted endoscopic surgery: A sensorized end effector. International Journal of Medical Robotics and Computer Assisted Surgery 1(2), 53–63 (2005)CrossRefGoogle Scholar
  23. 23.
    Zemiti, N., Morel, G., Ortmaier, T., Bonnet, N.: Mechatronic design of a new robot for force control in minimally invasive surgery. IEEE/ASME Transactions on Mechatronics 12(2), 143–153 (2007)CrossRefGoogle Scholar
  24. 24.
    Mahvash, M., Okamura, A.M.: Friction compensation for enhancing transparency of a teleoperator with compliant transmission. IEEE Transactions on Robotics 23(1), 1240–1246 (2007)CrossRefGoogle Scholar
  25. 25.
    Mahvash, M., Okamura, A.M.: Enhancing transparency of a position-exchange teleoperator. In: 2nd World Haptics, pp. 470–475 (2007)Google Scholar
  26. 26.
    Wagner, C.R., Howe, R.D.: Mechanisms of performance enhancement with force feedback. In: 1st World Haptics, pp. 21–29 (2005)Google Scholar
  27. 27.
    Semere, W., Kitagawa, M., Okamura, A.M.: Teleoperation with sensor/actuator asymmetry: Task performance with partial force feedback. In: 12th Symp. on Haptic Int. for Virt. Env. Teleoperator Sys., pp. 121–127 (2004)Google Scholar
  28. 28.
    Verner, L.N., Okamura, A.M.: Effects of translational and gripping force feedback are decoupled in a 4-degree-of-freedom telemanipulator. In: 2nd World Haptics, pp. 286–291 (2007)Google Scholar
  29. 29.
    Verner, L.N., Okamura, A.M.: Sensor/actuator asymmetries in telemanipulators: Implications of partial force feedback. In: 14th Symp. on Haptic Interfaces for Virtual Env. and Teleoperator Sys., pp. 309–314 (2006)Google Scholar
  30. 30.
    Prasad, S., Kitagawa, M., Fischer, G.S., Zand, J., Talamini, M.A., Taylor, R.H., Okamura, A.M.: A modular 2-dof force-sensing instrument for laparoscopic surgery. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 279–286. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  31. 31.
    Kitagawa, M., Dokko, D., Okamura, A.M., Yuh, D.D.: Effect of sensory substitution on suture manipulation forces for robotic surgical systems. Journal of Thoracic and Cardiovascular Surgery 129(1), 151–158 (2005)CrossRefGoogle Scholar
  32. 32.
    Schoonmaker, R.E., Cao, C.G.L.: Vibrotactile feedback enhances force perception in minimally invasive surgery. In: Human Factors and Ergonomics Society 50th Annual Meeting, pp. 1029–1033 (2006)Google Scholar
  33. 33.
    Reiley, C.E., Akinbiyi, T., Burschka, D., Chang, D.C., Okamura, A.M., Yuh, D.D.: Effects of visual force feedback on robot-assisted surgical task performance. Journal of Thoracic and Cardiovascular Surgery 135(1), 196–202 (2008)CrossRefGoogle Scholar
  34. 34.
    Tavakoli, M., Aziminejad, A., Patel, R.V., Moallem, M.: Multi-sensory force/deformation cues for stiffness characterization in soft-tissue palpation. In: 28th Ann. Int. Conf. IEEE Eng. in Med. and Bio. Soc., pp. 837–840 (2006)Google Scholar
  35. 35.
    Abbott, J.J., Marayong, P., Okamura, A.M.: Haptic virtual fixtures for robot-assisted manipulation. In: Robotics Research. Springer Tracts in Advanced Robotics, pp. 49–64. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    De Gersem, G., Van Brussel, H., Tendick, F.: Reliable and enhanced stiffness perception in soft-tissue telemanipulation. International Journal of Robotics Research 24(10), 805–822 (2005)CrossRefGoogle Scholar
  37. 37.
    Miller, A.P., Hammoud, Z., Son, J.S., Peine, W.J.: Tactile imaging system for localizing lung nodules during video assisted thoracoscopic surgery. In: IEEE International Conference on Robotics and Automation, pp. 2996–3001 (2007)Google Scholar
  38. 38.
    Howe, R.D., Peine, W.J., Kontarinis, D.A., Son, J.S.: Remote palpation technology. IEEE Engineering in Medicine and Biology 14(3), 318–323 (1995)CrossRefGoogle Scholar
  39. 39.
    Abbott, J.J., Okamura, A.M.: Pseudo-admittance bilateral telemanipulation with guidance virtual fixtures. International Journal of Robotics Research 26(8), 865–884 (2007)CrossRefGoogle Scholar
  40. 40.
    Hashtrudi-Zaad, K., Salcudean, S.E.: Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. International Journal of Robotics Research 20(6), 419–445 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. M. Okamura
    • 1
  • L. N. Verner
    • 1
  • C. E. Reiley
    • 1
  • M. Mahvash
    • 1
  1. 1.Center for Computer-Integrated Surgical Systems and Technology, Laboratory for Computational Sensing and RoboticsThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations