Advertisement

Challenges of Human Behavior Understanding

  • Albert Ali Salah
  • Theo Gevers
  • Nicu Sebe
  • Alessandro Vinciarelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6219)

Abstract

Recent advances in pattern recognition has allowed computer scientists and psychologists to jointly address automatic analysis of of human behavior via computers. The Workshop on Human Behavior Understanding at the International Conference on Pattern Recognition explores a number of different aspects and open questions in this field, and demonstrates the multi-disciplinary nature of this research area. In this brief summary, we give an overview of the Workshop and discuss the main research challenges.

Keywords

Human Behavior Action Recognition Ambient Intelligence Human Action Recognition Motion History Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nicolini, C., Lepri, B., Teso, S., Passerini, A.: From on-going to complete activity recognition exploiting related activities. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 26–37. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Phithakkitnukoon, S., Horanont, T., Di Lorenzo, G., Shibasaki, R., Ratti, C.: Activity-aware map: Identifying human daily activity pattern using mobile phone data. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 14–25. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal and Ubiquitous Computing 10(4), 255–268 (2006)CrossRefGoogle Scholar
  4. 4.
    Altun, K., Barshan, B.: Human activity recognition using inertial/magnetic sensor units. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 38–51. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Jain, R.: Understanding macroscopic human behavior. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, p. 13. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    Gavrila, D.: The Visual Analysis of Human Movement: A Survey. Computer Vision and Image Understanding 73(1), 82–98 (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pattern Recognition 36(3), 585–601 (2003)CrossRefGoogle Scholar
  8. 8.
    Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)CrossRefGoogle Scholar
  9. 9.
    Bobick, A., Davis, J.: The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(3), 257–267 (2001)CrossRefGoogle Scholar
  10. 10.
    Ahmad, M., Lee, S.W.: Variable silhouette energy image representations for recognizing human actions. Image and Vision Computing 28(5), 814–824 (2010)CrossRefGoogle Scholar
  11. 11.
    Hahn, M., Quronfuleh, F., Woehler, C., Kummert, F.: 3d mean-shift tracking and recognition of working actions. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 101–112. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Richarz, J., Fink, G.A.: Feature representations for the recognition of 3D emblematic gestures. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 113–124. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Ali, S., Shah, M.: Human action recognition in videos using kinematic features and multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(2), 288–303 (2010)CrossRefGoogle Scholar
  14. 14.
    Kehl, R., Gool, L.: Markerless tracking of complex human motions from multiple views. Computer Vision and Image Understanding 104(2-3), 190–209 (2006)CrossRefGoogle Scholar
  15. 15.
    Moeslund, T., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2-3), 90–126 (2006)CrossRefGoogle Scholar
  16. 16.
    Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  17. 17.
    Laptev, I.: On space-time interest points. International Journal of Computer Vision 64(2), 107–123 (2005)CrossRefGoogle Scholar
  18. 18.
    Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(12), 2247–2253 (2007)CrossRefGoogle Scholar
  19. 19.
    Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE Int. Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005)Google Scholar
  20. 20.
    Rius, I., Gonzà les, J., Varona, J., Roca, X.: Action-specific motion prior for efficient Bayesian 3D human body tracking. Pattern Recognition 42(11), 2907–2921 (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    Laptev, I.: Recognizing human action in the wild. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, p. 87. Springer, Heidelberg (2010)Google Scholar
  22. 22.
    Ryoo, M., Aggarwal, J.: Hierarchical recognition of human activities interacting with objects. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  23. 23.
    Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)CrossRefGoogle Scholar
  24. 24.
    Gao, Z., Chen, M.Y., Hauptmann, A., Cai, A.: Comparing evaluation protocols on the KTH dataset. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 88–100. Springer, Heidelberg (2010)Google Scholar
  25. 25.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local SVM approach. In: International Conference on Pattern Recognition, vol. 3, pp. 32–36. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  26. 26.
    Vinciarelli, A., Pantic, M., Bourlard, H.: Social signal processing: Survey of an emerging domain. Image and Vision Computing 27(12), 1743–1759 (2009)CrossRefGoogle Scholar
  27. 27.
    Poggi, I., D’Errico, F.: Dominance signals in debates. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 163–174. Springer, Heidelberg (2010)Google Scholar
  28. 28.
    D’Errico, F., Leone, G., Poggi, I.: Types of help in the teacher’s multimodal behavior. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 125–139. Springer, Heidelberg (2010)Google Scholar
  29. 29.
    Lepri, B., Kalimeri, K., Pianesi, F.: Honest signals and their contribution to the automatic analysis of personality traits - a comparative study. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 140–150. Springer, Heidelberg (2010)Google Scholar
  30. 30.
    John, O., Srivastava, S.: The Big Five Trait Taxonomy: History, Measurement, and Theoretical Perspectives. In: Pervian, L., John, O. (eds.) Handbook of personality: theory and research. The Guilford Press, New York (1999)Google Scholar
  31. 31.
    Pfister, T., Robinson, P.: Speech emotion classification and public speaking skill assessment. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 151–162. Springer, Heidelberg (2010)Google Scholar
  32. 32.
    Ozkan, D., Morency, L.P.: Concensus of self-features for nonverbal behavior analysis. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 75–86. Springer, Heidelberg (2010)Google Scholar
  33. 33.
    Ekman, P., Rosenberg, E.: What the face reveals: Basic and applied studies of spontaneous expression using the Facial Action Coding System (FACS). Oxford University Press, USA (2005)CrossRefGoogle Scholar
  34. 34.
    Mehrabian, A.: Nonverbal communication. Aldine (2007)Google Scholar
  35. 35.
    Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(1), 39–58 (2009)CrossRefGoogle Scholar
  36. 36.
    Salah, A., Sebe, N., Gevers, T.: Communication and automatic interpretation of affect from facial expressions. In: Affective Computing and Interaction: Psychological, Cognitive and Neuroscientific Perspectives. IGI Global (to appear)Google Scholar
  37. 37.
    Yücel, Z., Salah, A.: Head pose and neural network based gaze direction estimation for joint attention modeling in embodied agents. In: Proc. 31st Annual Conference of Cognitive Science Society (2009)Google Scholar
  38. 38.
    Cinar Akakin, H., Sankur, B.: Spatiotemporal-Boosted DCT Features for Head and Face Gesture Analysis. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 64–74. Springer, Heidelberg (2010)Google Scholar
  39. 39.
    Utsumi, Y., Iwai, Y., Ishiguro, H.: Face tracking and recognition considering the camera’s field of view. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 52–63. Springer, Heidelberg (2010)Google Scholar
  40. 40.
    Ong, S., Ranganath, S.: Automatic sign language analysis: A survey and the future beyond lexical meaning. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6), 873–891 (2005)CrossRefGoogle Scholar
  41. 41.
    Aarts, E., Encarnação, J.: True visions: The emergence of ambient intelligence. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  42. 42.
    Crowley, J., Coutaz, J., Bérard, F.: Perceptual user interfaces: things that see. Communications of the ACM 43(3), 54–64 (2000)CrossRefGoogle Scholar
  43. 43.
    Crowley, J.: Context driven observation of human activity. In: Aarts, E., Collier, R.W., van Loenen, E., de Ruyter, B. (eds.) EUSAI 2003. LNCS, vol. 2875, pp. 101–118. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  44. 44.
    Guesgen, H., Marsland, S.: Spatio-temporal reasoning and context awareness. In: Handbook of Ambient Intelligence and Smart Environments, pp. 609–634 (2010)Google Scholar
  45. 45.
    Pentland, A.: Looking at people: Sensing for ubiquitous and wearable computing. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 107–119 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Albert Ali Salah
    • 1
  • Theo Gevers
    • 1
  • Nicu Sebe
    • 2
  • Alessandro Vinciarelli
    • 3
  1. 1.Institute of InformaticsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Dept. of Information Engineering and Computer ScienceUniversity of TrentoTrentoItaly
  3. 3.Department of Computing ScienceUniversity of GlasgowGlasgowScotland

Personalised recommendations