Advertisement

Abstract

A common scenario in many pairing-based cryptographic protocols is that one argument in the pairing is fixed as a long term secret key or a constant parameter in the system. In these situations, the runtime of Miller’s algorithm can be significantly reduced by storing precomputed values that depend on the fixed argument, prior to the input or existence of the second argument. In light of recent developments in pairing computation, we show that the computation of the Miller loop can be sped up by up to 37% if precomputation is employed, with our method being up to 19.5% faster than the previous precomputation techniques.

Keywords

Pairings Miller’s algorithm Tate pairing ate pairing precomputation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aranha, D.F., López, J., Hankerson, D.: High-speed parallel software implementation of the η T pairing. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 89–105. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Arene, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster pairing computation. Cryptology ePrint Archive, Report 2009/155 (2009)Google Scholar
  3. 3.
    Barreto, P.S.L.M., Galbraith, S.D., O’Eigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular abelian varieties. Designs, Codes and Cryptography 42(3), 239–271 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient implementation of pairing-based cryptosystems. J. Cryptology 17(4), 321–334 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Benger, N., Scott, M.: Constructing tower extensions for the implementation of pairing-based cryptography. In: Hasan, Helleseth (eds.) [26],Google Scholar
  7. 7.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004), doi:10.1007/b97182Google Scholar
  8. 8.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin (ed.) [19], pp. 41–55.Google Scholar
  9. 9.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptology 17(4), 297–319 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: Meadows, C., Syverson, P. (eds.) Proc. 12th ACM Conference on Computer and Communications Security (CCS), pp. 320–329. ACM, New York (2005)CrossRefGoogle Scholar
  13. 13.
    Chen, L., Kudla, C.: Identity based authenticated key agreement protocols from pairings. In: Proceedings 16th IEEE Computer Security Foundations Workshop (CSWF-16), pp. 219–233. IEEE, Los Alamitos (2003)CrossRefGoogle Scholar
  14. 14.
    Costello, C., Boyd, C., Nieto, J.M.G., Wong, K.K.H.: Avoiding full extension field arithmetic in pairing computations. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 203–224. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Costello, C., Boyd, C., Nieto, J.M.G., Wong, K.K.H.: Delaying mismatched field multiplications in pairing computations. In: Hasan, Helleseth (eds.) [26]Google Scholar
  16. 16.
    Costello, C., Hisil, H., Boyd, C., Nieto, J.M.G., Wong, K.K.H.: Faster pairings on special Weierstrass curves. In: Shacham, Waters (eds.) [43], pp. 89–101Google Scholar
  17. 17.
    Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 224–242. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Devegili, A.J., Scott, M., Dahab, R.: Implementing cryptographic pairings over Barreto-Naehrig curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Franklin, M.K. (ed.): CRYPTO 2004. LNCS, vol. 3152. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  20. 20.
    Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptology 23(2), 224–280 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Galbraith, S.D.: Supersingular curves in cryptography. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 495–513. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Wright, R., De Capitani de Vimercati, S., Shmatikov, V. (eds.) Proc. 13th ACM Conference on Computer and Communications Security (CCS), pp. 89–98. ACM, New York (2006)CrossRefGoogle Scholar
  25. 25.
    Hankerson, D., Menezes, A.J., Scott, M.: Software implementation of pairings. In: Joye, M., Neven, G. (eds.) Identity-Based Cryptography, pp. 188–206. IOS Press, Amsterdam (2008)Google Scholar
  26. 26.
    Hasan, A.M., Helleseth, T. (eds.): WAIFI 2010. LNCS, vol. 6087. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  27. 27.
    Hess, F.: Pairing lattices. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 18–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transactions on Information Theory 52(10), 4595–4602 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  30. 30.
    Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Matsuda, S., Kanayama, N., Hess, F., Okamoto, E.: Optimised versions of the ate and twisted ate pairings. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 302–312. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    McCullagh, N., Barreto, P.S.: A new two-party identity-based authenticated key agreement. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–274. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Menezes, A.J.: Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, Dordrecht (1993)zbMATHGoogle Scholar
  35. 35.
    Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology 17, 235–261 (2004)zbMATHCrossRefGoogle Scholar
  36. 36.
    Naehrig, M., Barreto, P.S.L.M., Schwabe, P.: On compressible pairings and their computation. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 371–388. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  37. 37.
    Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for cryptographic pairings. Cryptology ePrint Archive, Report 2010/186 (2010)Google Scholar
  38. 38.
    Scott, M.: Implementing cryptographic pairings. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 177–196. Springer, Heidelberg (2007)Google Scholar
  39. 39.
    Scott, M., Barreto, P.S.L.M.: Compressed pairings. In: Franklin (ed.) [19], pp. 140–156Google Scholar
  40. 40.
    Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: Fast hashing to G 2 on pairing-friendly curves. In: Shacham, Waters (eds.) [43], pp. 102–113Google Scholar
  41. 41.
    Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: On the final exponentiation for calculating pairings on ordinary elliptic curves. In: Shacham, Waters (eds.) [43], pp. 78–88Google Scholar
  42. 42.
    Scott, M., Costigan, N., Abdulwahab, W.: Implementing cryptographic pairings on smartcards. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 134–147. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  43. 43.
    Shacham, H., Waters, B. (eds.): Pairing 2009. LNCS, vol. 5671. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  44. 44.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Goos, G., Hartmanis, J. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  45. 45.
    Smart, N.P.: Identity-based authenticated key agreement protocol based on Weil pairing. Electronics Letters 38(13), 630–632 (2002)zbMATHCrossRefGoogle Scholar
  46. 46.
    Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56(1), 455–461 (2010)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Craig Costello
    • 1
  • Douglas Stebila
    • 1
  1. 1.Information Security InstituteQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations