Problems of Modeling in the Analysis of Covert Channels

  • Alexander Grusho
  • Nikolai Grusho
  • Elena Timonina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6258)


Sometimes the analysis of covert channel is weakly dependent on the correctness of probabilistic models, but more often the result of such analysis is seriously dependent on the choice of a probabilistic model. We show how the problem of detection of covert communications depends on the correctness of the choice of probabilistic model. We found the dependence of judgments about invisibility of covert communication from the bans in a probabilistic model of the legal communication.


covert channel detection of information flow covert communication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnson, N.F., Duric, Z., Jajodia, S.: Information Hiding: Steganography and Watermarking-Attacks and Countermeasures. Kluwer Academic Publishers, Boston (2000)Google Scholar
  2. 2.
    Wang, Y., Moulin, P.: Perfectly secure steganography: Capacity, error exponents, and code constructions. IEEE Transactions on Information Theory, Special Issue on Security 54(6) (2008)Google Scholar
  3. 3.
    Grusho, A., Kniazev, A., Timonina, E.: Detection of Illegal Information Flow. In: Gorodetsky, V., Kotenko, I., Skormin, V.A. (eds.) MMM-ACNS 2005. LNCS, vol. 3685, pp. 235–244. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Filler, T., Fridrich, J.: Complete characterization of perfectly secure stego-systems with mutually independent embedding operation. In: Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 19–24 (2009)Google Scholar
  5. 5.
    Cachin, C.: An information-theoretic model for steganography. Information and Computation 192(1), 41–56 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Moulin, P., Wang, Y.: New results on steganographic capacity. In: Proceedings of the Conference on Information Sciences and Systems, CISS, March 17-19 (2004)Google Scholar
  7. 7.
    Filler, T., Fridrich, J., Ker, A.D.: The square root law of steganographic capacity for Markov covers. In: Delp, E.J., Wong, P.W., Memon, N., Dittmann, J. (eds.) Proceedings SPIE, Electronic Imaging, Security and Forensics of Multimedia, San Jose, CA, vol. XI, pp. 18–21 (January 2009)Google Scholar
  8. 8.
    Simmons, G.J.: The prisoners problem and the subliminal channel. In: Chaum, D. (ed.) Advances in Cryptology: Proceedings of Crypto 1983, pp. 51–67 (1984)Google Scholar
  9. 9.
    Grusho, A.: On existence of subliminal channels. Discrete Mathematics and Applications 9(2), 1–8 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Shannon, K.: The works on information theory and cybernetics. Foreign Literature, Moscow (1963) (in Russian)Google Scholar
  11. 11.
    Bourbaki, N.: Topologie Generale. Science, Moscow (1968) (in Russian)Google Scholar
  12. 12.
    Prokhorov, U.V., Rozanov, U.A.: Theory of probabilities. Science, Moscow (1993) (in Russian)Google Scholar
  13. 13.
    Grusho, A., Grebnev, N., Timonina, E.: Covert channel invisibility theorem. In: Gorodetsky, V., Kotenko, I., Skormin, V.A. (eds.) Proceedings of Fourth International Conference on Mathematical Methods, Models, and Architectures for Computer Network Security, MMM-ACNS 2007, pp. 187–196. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexander Grusho
    • 1
  • Nikolai Grusho
    • 2
  • Elena Timonina
    • 2
  1. 1.Moscow State UniversityMoscowRussian Federation
  2. 2.Russian State University for the HumanitiesMoscowRussian Federation

Personalised recommendations