Compositions of Top-Down Tree Transducers with ε-Rules

  • Andreas Maletti
  • Heiko Vogler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6062)


Top-down tree transducers with ε-rules (εtdtts) are a restricted version of extended top-down tree transducers. They are implemented in the framework Tiburon and fulfill some criteria desirable in a machine translation model. However, they compute a class of transformations that is not closed under composition (not even for linear and nondeleting εtdtts). A composition construction that composes two εtdtts M and N is presented, and it is shown that the construction is correct, whenever (i) N is linear, (ii) M is total or N is nondeleting, and (iii) M has at most one output symbol in each rule.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  2. 2.
    Mohri, M.: Weighted Automata Algorithms. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, pp. 209–252. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Mohri, M., Pereira, F.C.N., Riley, M.: The design principles of a weighted finite-state transducer library. Theoret. Comput. Sci. 231(1), 17–32 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kaplan, R.M., May, M.: Regular models of phonological rule systems. Computational Linguistics 20(3), 331–378 (1994)Google Scholar
  5. 5.
    Kanthak, S., Ney, H.: Fsa: an efficient and flexible C + +  toolkit for finite state automata using on-demand computation. In: Proc. ACL, pp. 510–517 (2004)Google Scholar
  6. 6.
    Graehl, J.: Carmel: finite-state toolkit. ISI/USC (1997),
  7. 7.
    Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst — a general and efficient weighted finite-state transducer library. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Rounds, W.C.: Mappings and grammars on trees. Math. Syst. Theory 4(3), 257–287 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. Syst. Sci. 4(4), 339–367 (1970)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Arnold, A., Dauchet, M.: Transductions inversibles de forêts. Thèse 3ème cycle M. Dauchet, Université de Lille (1975)Google Scholar
  11. 11.
    Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: Proc. ICALP, pp. 74–86. Cambridge University Press, Cambridge (1976)Google Scholar
  12. 12.
    Graehl, J., Knight, K., May, J.: Training tree transducers. Computational Linguistics 34(3), 391–427 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Shabes, Y.: Mathematical and computational aspects of lexicalized grammars. PhD thesis, University of Pennsylvania (1990)Google Scholar
  14. 14.
    Shieber, S.M., Schabes, Y.: Synchronous tree-adjoining grammars. In: Proc. ACL, pp. 253–258 (1990)Google Scholar
  15. 15.
    Lilin, E.: Une généralisation des transducteurs d’états finis d’arbres: les S-transducteurs. Thèse 3ème cycle, Université de Lille (1978)Google Scholar
  16. 16.
    Lilin, E.: Propriétés de clôture d’une extension de transducteurs d’arbres déterministes. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 280–289. Springer, Heidelberg (1981)Google Scholar
  17. 17.
    Fülöp, Z., Kühnemann, A., Vogler, H.: A bottom-up characterization of deterministic top-down tree transducers with regular look-ahead. Inf. Process. Lett. 91(2), 57–67 (2004)zbMATHCrossRefGoogle Scholar
  18. 18.
    Fülöp, Z., Kühnemann, A., Vogler, H.: Linear deterministic multi bottom-up tree transducers. Theoret. Comput. Sci. 347(1-2), 276–287 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Engelfriet, J., Lilin, E., Maletti, A.: Extended multi bottom-up tree transducers. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 289–300. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Shieber, S.M.: Synchronous grammars as tree transducers. In: Proc. TAG+7, pp. 88–95 (2004)Google Scholar
  21. 21.
    Maletti, A.: Compositions of extended top-down tree transducers. Inf. Comput. 206(9-10), 1187–1196 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Knight, K., May, J.: Applications of Weighted Automata in Natural Language Processing. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, pp. 555–580. Springer, Heidelberg (2009)Google Scholar
  24. 24.
    May, J., Knight, K.: Tiburon: A weighted tree automata toolkit. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 102–113. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down tree transducers. SIAM J. Comput. 39(2), 410–430 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Yamada, K., Knight, K.: A decoder for syntax-based statistical MT. In: ACL, pp. 303–310 (2002)Google Scholar
  27. 27.
    Baker, B.S.: Composition of top-down and bottom-up tree transformations. Inform. Control 41(2), 186–213 (1979)zbMATHCrossRefGoogle Scholar
  28. 28.
    Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison. Math. Systems Theory 9(3), 198–231 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Berstel, J.: Transductions and context-free languages. Teubner, Stuttgart (1979)zbMATHGoogle Scholar
  30. 30.
    Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)zbMATHGoogle Scholar
  31. 31.
    Gécseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages, vol. 3, pp. 1–68. Springer, Heidelberg (1997)Google Scholar
  32. 32.
    Kuich, W.: Full abstract families of tree series I. In: Jewels Are Forever, pp. 145–156. Springer, Heidelberg (1999)Google Scholar
  33. 33.
    Heger, C.: Composition of linear and nondeleting top-down tree transducers with ε-rules. Master’s thesis, TU Dresden (2008)Google Scholar
  34. 34.
    Knight, K.: Capturing practical natural language transformations. Machine Translation 21(2), 121–133 (2007)CrossRefGoogle Scholar
  35. 35.
    Knight, K.: Requirements on an MT system. Personal communication (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andreas Maletti
    • 1
  • Heiko Vogler
    • 2
  1. 1.Departament de Filologies RomàniquesUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Faculty of Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations