Abstract

Weighted tree grammars (for short: WTG) are an extension of weighted context-free grammars that generate trees instead of strings. They can be used in natural language parsing to directly generate the parse tree of a sentence or to encode the set of all parse trees of a sentence. Two types of simulations for WTG over idempotent, commutative semirings are introduced. They generalize the existing notions of simulation and bisimulation for WTG. Both simulations can be used to reduce the size of WTG while preserving the semantics, and are thus an important tool in toolkits. Since the new notions are more general than the existing ones, they yield the best reduction rates achievable by all minimization procedures that rely on simulation or bisimulation. However, the existing notions might allow faster minimization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dale, R., Moisl, H., Somers, H.L. (eds.): Handbook of Natural Language Processing. CRC Press, Boca Raton (2000)Google Scholar
  2. 2.
    Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Klarlund, N., Møller, A.: MONA Version 1.4 User Manual. BRICS, Department of Computer Science, University of Aarhus (2001)Google Scholar
  5. 5.
    May, J., Knight, K.: Tiburon: A weighted tree automata toolkit. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 102–113. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Cleophas, L.: Forest FIRE and FIRE wood: Tools for tree automata and tree algorithms. In: Proc. FSMNLP, pp. 191–198 (2008)Google Scholar
  7. 7.
    Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoret. Comput. Sci. 18(2), 115–148 (1982)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ésik, Z., Kuich, W.: Formal tree series. J. Autom. Lang. Combin. 8(2), 219–285 (2003)MATHGoogle Scholar
  9. 9.
    Borchardt, B.: The Theory of Recognizable Tree Series. PhD thesis, Technische Universität Dresden (2005)Google Scholar
  10. 10.
    Hopcroft, J.E.: An n logn algorithm for minimizing states in a finite automaton. Theory of Machines and Computations, pp. 189–196. Academic Press, London (1971)Google Scholar
  11. 11.
    Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimisation of tree automata. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 109–121. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Maletti, A.: Minimizing deterministic weighted tree automata. Inform. and Comput. 207(11), 1284–1299 (2009)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: Proc. FOCS, pp. 125–129. IEEE Computer Society, Los Alamitos (1972)Google Scholar
  14. 14.
    Gramlich, G., Schnitger, G.: Minimizing nfa’s and regular expressions. J. Comput. System Sci. 73(6), 908–923 (2007)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition complexity assuming P ≠ NP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Abdulla, P.A., Högberg, J., Kaati, L.: Bisimulation minimization of tree automata. Int. J. Found. Comput. Sci. 18(4), 699–713 (2007)MATHCrossRefGoogle Scholar
  17. 17.
    Abdulla, P.A., Bouajjani, A., Holík, L., Kaati, L., Vojnar, T.: Computing simulations over tree automata. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 93–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Maletti, A.: A backward and a forward simulation for weighted tree automata. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 288–304. Springer, Heidelberg (2009)Google Scholar
  19. 19.
    Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series. Theoret. Comput. Sci. 27(1-2), 211–215 (1983)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Bozapalidis, S.: Effective construction of the syntactic algebra of a recognizable series on trees. Acta Inform. 28(4), 351–363 (1991)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Högberg, J., Maletti, A., May, J.: Bisimulation minimisation for weighted tree automata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 229–241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Huang, L., Chiang, D.: Better k-best parsing. In: Proc. IWPT, pp. 53–64 (2005)Google Scholar
  23. 23.
    Alexandrakis, A., Bozapalidis, S.: Weighted grammars and Kleene’s theorem. Information Processing Letters 24(1), 1–4 (1987)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Systems 32(1), 1–33 (1999)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata. J. Autom. Lang. Combin. 8(3), 417–463 (2003)MATHMathSciNetGoogle Scholar
  26. 26.
    Abdulla, P.A., Holík, L., Kaati, L., Vojnar, T.: A uniform (bi-)simulation-based framework for reducing tree automata. In: Proc. MEMICS, pp. 3–11 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andreas Maletti
    • 1
  1. 1.Departament de Filologies RomàniquesUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations