Mean Field Games and Applications

  • Olivier Guéant
  • Jean-Michel Lasry
  • Pierre-Louis Lions
Part of the Lecture Notes in Mathematics book series (LNM, volume 2003)


This text is inspired from a “Cours Bachelier” held in January 2009 and taught by Jean-Michel Lasry. This course was based upon the articles of the three authors and upon unpublished materials they developed. Proofs were not presented during the conferences and are now available. So are some issues that were only rapidly tackled during class.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1964)MATHGoogle Scholar
  2. 2.
    Acemoglu, D., Aghion, P., Zilibotti, F.: Distance to frontier, selection, and economic growth. J. Eur. Econ. Assoc. 4(1) (2006)Google Scholar
  3. 3.
    Achdou, Y., Capuzzo-Dolcetta, I.: Mean field games: Numerical methods (To appear)Google Scholar
  4. 4.
    Aghion, P., Bloom, N., Blundell, R., Griffith, R., Howitt, P.: Competition and innovation: An inverted-u relationship. Q. J. Econ. 120(2) (2005)Google Scholar
  5. 5.
    Aghion, P., Harris, C., Howitt, P., Vickers, J.: Competition, imitation and growth with step-by-step innovation. Rev. Econ. Stud. 68(3), 467–492 (2001)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Aghion, P., Howitt, P. (To appear)Google Scholar
  7. 7.
    Atkinson, A.: Top incomes in the united kingdom over the 20th century. J. R. Stat. Soc. 168, 325-343 (2005)MATHCrossRefGoogle Scholar
  8. 8.
    Atkinson, A., Piketty, T.: Top Incomes over the Twentieth Century: A Contrast between European and English-Speaking Countries. Oxford University Press, Oxford (2007)Google Scholar
  9. 9.
    Aumann, R.: Markets with a continuum of traders. Econometrica 32(1/2), 1–17 (1964)CrossRefGoogle Scholar
  10. 10.
    Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman equations. Birkhuser, Boston (1997)MATHCrossRefGoogle Scholar
  11. 11.
    Bensoussan, A., Frehse, J.: Nonlinear elliptic systems in stochastic game theory. J. Reine Angew. Math. 350, 23–67 (1984)MathSciNetMATHGoogle Scholar
  12. 12.
    Bensoussan, A., Frehse, J.: Ergodic bellman systems for stochastic games in arbitrary dimension. Proc. Roy. Soc. A. 449, 65–77 (1995)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Carmona, G.: Nash equilibria of games with a continuum of players. FEUNL Working paper series no.466 (2004)Google Scholar
  14. 14.
    Chakrabarti, B.K., Chatterjee, A., Yarlagadda, S.: Econophysics of Wealth Distributions. Springer (2005)Google Scholar
  15. 15.
    Cordier, S., Pareschi, L., Toscani, G.: On a kinetic model for a simple market economy. J. Stat. Phys. 120(1/2), 253–277 (2005)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Cross, R., Grinfeld, M., Lamba, H.: A mean-field model of investor behaviour. Journal of Physics: Conference Series 55 (2006)Google Scholar
  17. 17.
    David, H.A., Nagaraja, H.N.: Order Statistics (Third edition). Wiley, New Jersey (2003)MATHCrossRefGoogle Scholar
  18. 18.
    Ekeland, I.: Le ptrole sera-t-il brad? Pour la Science (2007)Google Scholar
  19. 19.
    Farkas, I., Helbing, D., Vicsek, T.: Mexican wave in an excitable medium. Nature 419, 131–132 (2002)CrossRefGoogle Scholar
  20. 20.
    Giraud, P.N., Guant, O., Lasry, J.M., Lions, P.L.: A mean field game model of oil production in presence of alternative energy producers (To appear)Google Scholar
  21. 21.
    Gomes, D., Mohr, J., Sousa, R.: Discrete time, finite state space mean field games. Journal de Mathmatiques Pures et Appliqus 93, 308–328 (2010)MATHCrossRefGoogle Scholar
  22. 22.
    Guant, O.: Mean field games and applications to economics. Ph.D. thesis, Universit Paris-Dauphine (2009)Google Scholar
  23. 23.
    Guant, O.: A reference case for mean field games. Journal de Mathmatiques Pures et Appliques 92, 276–294 (2009)CrossRefGoogle Scholar
  24. 24.
    Guant, O.: A reference case for mean field games. Cahier de la Chaire Finance et Dveloppement Durable 10 (2009)Google Scholar
  25. 25.
    Guant, O., Lasry, J.M., Lions, P.L.: Mean field games and oil production. In: Lasry, J.M., Lautier, D., Fessler, D. (eds.) The Economics of Sustainable Development. Economica (2010)Google Scholar
  26. 26.
    Guesnerie, R.: An exploration of the eductive justifications of the rational-expectations hypothesis. Am. Econ. Rev. 82(5), 1254-1278 (1992)MathSciNetGoogle Scholar
  27. 27.
    Horst, U.: Ergodic fluctuations in a stock market model with interacting agents: the mean field case. Discussion paper No. 106, Sonderforschungbereich 373, Humboldt Universitt, Berlin (1999)Google Scholar
  28. 28.
    Hotelling, H.: The economics of exhaustible resources. J. Polit. Econ. 39(2), 137–175 (1931)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kalai, E.: Private information in large games. Discussion paper 1312. Center for Mathematical Studies in Economics and Management Science. Northwestern University (2000)Google Scholar
  30. 30.
    Kalai, E.: Ex-post stability in large games. Discussion paper 1351. Center for Mathematical Studies in Economics and Management Science. Northwestern University (2001)Google Scholar
  31. 31.
    Kalai, E.: Large robust games. Econometrica 72(6) (2004)Google Scholar
  32. 32.
    Khan, A., Sun, Y.: Non-cooperative games with many players (2002)Google Scholar
  33. 33.
    Lachapelle, A., Salomon, J., Turinici, G.: Computation of mean field equilibria in economics. Mathematical Models and Methods in Applied Sciences no. 1, 1–22 (2010)Google Scholar
  34. 34.
    Lasry, J.M., Lions, P.L.: Jeux champ moyen i. le cas stationnaire. C. R. Acad. Sci. Paris 343(9), 619–625 (2006)Google Scholar
  35. 35.
    Lasry, J.M., Lions, P.L.: Jeux champ moyen ii. horizon fini et contrle optimal. C. R. Acad. Sci. Paris 343(10), 679–684 (2006)Google Scholar
  36. 36.
    Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Lasry, J.M., Lions, P.L.: Mean field games. Cahiers de la Chaire Finance et Dveloppement Durable (2) (2007)Google Scholar
  38. 38.
    Lions, P.L.: Thorie des jeux champs moyen et applications. Cours au Collge de France, (2007–2008)
  39. 39.
    Lions, P.L.: Mathematical Topics in Fluid Mechanics. Oxford Science Publications, Clarendon Press, Oxford (Vol.1 (1996); Vol.2 (1998))Google Scholar
  40. 40.
    Lucas, R., Sargent, T.: Rational expectations and econometric practice. University of Minnesota Press, Minnesota (1981)Google Scholar
  41. 41.
    Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)CrossRefGoogle Scholar
  42. 42.
    Muth, J.F.: Rational expectations and the theory of price movements. Econometrica 29(3), 315–335 (1961)CrossRefGoogle Scholar
  43. 43.
    Nash, J.: The bargaining problem. Econometrica 18, 155–162 (1950)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Nash, J.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 36, 48–49 (1950)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Nash, J.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Nash, J.: Two-person cooperative games. Econometrica 21, 128–140 (1953)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Neumann, J.V., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)MATHGoogle Scholar
  48. 48.
    Piketty, T.: Income inequality in france, 1901-1998. J. Polit. Econ. 111(5), 1004–1042 (2003)CrossRefGoogle Scholar
  49. 49.
    Piketty, T., Saez, E.: Income inequality in the united states, 1913-1998. Q. J. Econ. 118(1), 1–39 (2003)CrossRefGoogle Scholar
  50. 50.
    Touzi, N.: Stochastic control and application to finance. Scuola Normale Superiore, Pisa. Special Research Semester on Financial Mathematics (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Olivier Guéant
    • 1
  • Jean-Michel Lasry
    • 2
  • Pierre-Louis Lions
    • 3
  1. 1.UFR de MathématiquesUniversité Paris-DiderotParisFrance
  2. 2.Institut de FinanceUniversité Paris-Dauphine, Place du Maréchal de Lattre de TassignyParis Cedex 16France
  3. 3.Collège de FranceParis CX 05France

Personalised recommendations