Additively Homomorphic Encryption with d-Operand Multiplications

  • Carlos Aguilar Melchor
  • Philippe Gaborit
  • Javier Herranz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6223)

Abstract

The search for encryption schemes that allow to evaluate functions (or circuits) over encrypted data has attracted a lot of attention since the seminal work on this subject by Rivest, Adleman and Dertouzos in 1978.

In this work we define a theoretical object, chained encryption schemes, which allow an efficient evaluation of polynomials of degree d over encrypted data. Chained encryption schemes are generically constructed by concatenating cryptosystems with the appropriate homomorphic properties; such schemes are common in lattice-based cryptography. As a particular instantiation we propose a chained encryption scheme whose IND-CPA security is based on a worst-case/average-case reduction from uSVP.

Keywords

homomorphic encryption secure function evaluation lattices 

References

  1. 1.
    Aguilar Melchor, C., Castagnos, G., Gaborit, P.: Lattice-based homomorphic encryption of vector spaces. In: The 2008 IEEE International Symposium on Information Theory (ISIT 2008), Toronto, Ontario, Canada, pp. 1858–1862. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  2. 2.
    Aguilar Melchor, C., Gaborit, P., Herranz, J.: Additively homomorphic encryption with d-operand multiplications. Cryptology ePrint Archive, Report 2008/378 (2008), http://eprint.iacr.org/
  3. 3.
    Ajtai, M.: Representing hard lattices with O(n log n) bits. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, pp. 94–103. ACM, New York (2005)Google Scholar
  4. 4.
    Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Cheon, J.H., Kim, W.H., Nam, H.S.: Known-plaintext cryptanalysis of the Domingo-Ferrer algebraic privacy homomorphism scheme. Inf. Process. Lett. 97(3), 118–123 (2006)MATHMathSciNetGoogle Scholar
  7. 7.
    Choi, S.J., Blackburn, S.R., Wild, P.R.: Cryptanalysis of a homomorphic public-key cryptosystem over a finite group. J. Math. Cryptography 1, 351–358 (2007)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010, French Riviera. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Domingo-Ferrer, J.: A new privacy homomorphism and applications. Information Processing Letters 60(5), 277–282 (1996)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Domingo-Ferrer, J.: A provably secure additive and multiplicative privacy homomorphism. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 471–483. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fellows, M., Koblitz, N.: Combinatorial cryptosystems galore! In: Finite Fields: Theory, Applications, and Algorithms, Las Vegas, NV (1993). Contemp. Math., Amer. Math. Soc, vol. 168, pp. 51–61 (1994)Google Scholar
  13. 13.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of STOC 2009, pp. 169–178. ACM Press, New York (2009)Google Scholar
  14. 14.
    Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford University (2009), http://crypto.stanford.edu/craig
  15. 15.
    Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryptosystem from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–522. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Goldreich, O., Goldwasser, S., Halevi, S.: Eliminating decryption errors in the Ajtai-Dwork cryptosystem. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 105–111. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Grigoriev, D., Ponomarenko, I.: Homomorphic public-key cryptosystems and encrypting boolean circuits. Applicable Algebra in Engineering, Communication and Computing 17(3), 239–255 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit cryptosystems based on lattice problems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 315–329. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-private information retrieval (extended abstract). In: FOCS: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 364–373 (1997)Google Scholar
  22. 22.
    Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Mahajan, M.: Polynomial size log depth circuits: between NC 1 and AC 1. BEATCS: Bulletin of the European Association for Theoretical Computer Science 91 (2007)Google Scholar
  24. 24.
    Micciancio, D., Regev, O.: Lattice-Based Cryptography. In: Post Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Ostrovsky, R., Skeith III, W.E.: Private searching on streaming data. J. Cryptology 20(4), 397–430 (2007)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  27. 27.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: Proceedings of STOC 2009, pp. 333–342. ACM Press, New York (2009)Google Scholar
  28. 28.
    Regev, O.: New lattice based cryptographic constructions. Journal of the ACM 51(6), 899–942 (2004)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM 56(6), 34 (2009)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–180. Academic Press, London (1978)Google Scholar
  31. 31.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Sander, T., Young, A., Yung, M.: Non-interactive CryptoComputing for NC 1. In: Proceedings of the 40th Symposium on Foundations of Computer Science (FOCS), pp. 554–567. IEEE Computer Society Press, New York (1999)Google Scholar
  33. 33.
    Smart, N., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    Steinwandt, R., Geiselmann, W.: Cryptanalysis of Polly Cracker. IEEE Transactions on Information Theory 48(11), 2990–2991 (2002)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Wagner, D.: Cryptanalysis of an algebraic privacy homomorphism. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 234–239. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  36. 36.
    Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario, Canada, pp. 162–167. IEEE, Los Alamitos (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carlos Aguilar Melchor
    • 1
  • Philippe Gaborit
    • 1
  • Javier Herranz
    • 2
  1. 1.XLIM-DMIUniversité de LimogesLimoges CedexFrance
  2. 2.Dept. Matemàtica Aplicada IVUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations