Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE

  • Shweta Agrawal
  • Dan Boneh
  • Xavier Boyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6223)

Abstract

We present a technique for delegating a short lattice basis that has the advantage of keeping the lattice dimension unchanged upon delegation. Building on this result, we construct two new hierarchical identity-based encryption (HIBE) schemes, with and without random oracles. The resulting systems are very different from earlier lattice-based HIBEs and in some cases result in shorter ciphertexts and private keys. We prove security from classic lattice hardness assumptions.

References

  1. [ABB10]
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. [Ajt99]
    Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. [AP09]
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS, pp. 75–86 (2009)Google Scholar
  4. [BB04]
    Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. [BBG05]
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)Google Scholar
  6. [BF01]
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. [Boy10]
    Boyen, X.: Lattices mixing and vanishing trapdoors: A framework for fully secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. [BW06]
    Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. [CDMP05]
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgard revisited: how to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)Google Scholar
  10. [CHK07]
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. J. Crypto 20(3), 265–294 (2007); Abstract in Eurocrypt 2003 (2003) Google Scholar
  11. [CHKP10]
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. [GH09]
    Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially many levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. [GN08]
    Gama, N., Nguyen, P.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. [GPV08]
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC (2008)Google Scholar
  15. [GS02]
    Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. [HL02]
    Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. [MG02]
    Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic perspective, vol. 671. Kluwer Academic Publishers, Boston (March 2002)MATHGoogle Scholar
  18. [MR07]
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM Journal on Computing (SICOMP) 37(1), 267–302 (2007); Extended abstract in FOCS 2004 (2004)Google Scholar
  19. [Pei]
    Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptology ePrint Archive, Report (2009), /359, http://eprint.iacr.org/
  20. [Pei09]
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: STOC, pp. 333–342 (2009)Google Scholar
  21. [Reg09]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6) (2009); Extended abstract in STOC 2005 (2005) Google Scholar
  22. [Sha85]
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  23. [Wat05]
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)Google Scholar
  24. [Wat09]
    Waters, B.: Dual key encryption: Realizing fully secure IBE and HIBE under simple assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shweta Agrawal
    • 1
  • Dan Boneh
    • 2
  • Xavier Boyen
    • 3
  1. 1.University of Texas, Austin 
  2. 2.Stanford University 
  3. 3.Université de LiègeBelgium

Personalised recommendations