On Strong Simulation and Composable Point Obfuscation

  • Nir Bitansky
  • Ran Canetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6223)

Abstract

The Virtual Black Box (VBB) property for program obfuscators provides a strong guarantee: Anything computable by an efficient adversary given the obfuscated program can also be computed by an efficient simulator with only oracle access to the program. However, we know how to achieve this notion only for very restricted classes of programs.

This work studies a simple relaxation of VBB: Allow the simulator unbounded computation time, while still allowing only polynomially many queries to the oracle. We then demonstrate the viability of this relaxed notion, which we call Virtual Grey Box (VGB), in the context of fully composable obfuscators for point programs: It is known that, w.r.t. VBB, if such obfuscators exist then there exist multi-bit point obfuscators (aka “digital lockers”) and subsequently also very strong variants of encryption that are resilient to various attacks, such as key leakage and key-dependent-messages. However, no composable VBB-obfuscators for point programs have been shown. We show fully composable VGB-obfuscators for point programs under a strong variant of the Decision Diffie Hellman assumption. We show they suffice for the above applications and even for extensions to the public key setting as well as for encryption schemes with resistance to certain related key attacks (RKA).

References

  1. 1.
    Adida, B., Wikström, D.: How to shuffle in public. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 555–574. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and applications (2010) (manusript)Google Scholar
  3. 3.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation (2010), http://eprint.iacr.org
  5. 5.
    Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Boneh, D.: The decision diffie-hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Canetti, R., Kalai, Y.T., Varia, M., Wichs, D.: On symmetric encryption and point obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 52–71. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash functions (preliminary version). In: STOC, pp. 131–140 (1998)Google Scholar
  12. 12.
    Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Canetti, R., Varia, M.: Non-malleable obfuscation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 73–90. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In: STOC, pp. 654–663 (2005)Google Scholar
  15. 15.
    Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: ICS (2010)Google Scholar
  16. 16.
    Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary input. In: FOCS, pp. 553–562 (2005)Google Scholar
  17. 17.
    Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Hada, S.: Secure obfuscation for encrypted signatures. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 92–112. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Haitner, I., Holenstein, T.: On the (im)possibility of key dependent encryption. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Halevi, S., Krawczyk, H.: Security under key-dependent inputs. In: ACM Conference on Computer and Communications Security, pp. 466–475 (2007)Google Scholar
  21. 21.
    Hofheinz, D., Malone-Lee, J., Stam, M.: Obfuscation for cryptographic purposes. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 214–232. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 20–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)Google Scholar
  25. 25.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)Google Scholar
  26. 26.
    Wee, H.: On obfuscating point functions. In: STOC, pp. 523–532 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nir Bitansky
    • 1
  • Ran Canetti
    • 1
  1. 1.School of Computer ScienceTel Aviv University 

Personalised recommendations