Bitwise Higher Order Differential Cryptanalysis
Conference paper
- 2 Citations
- 587 Downloads
Abstract
This paper attempts to utilize the ideas of higher order differential cryptanalysis to investigate Boolean algebra based block ciphers. The theoretical foundation is built for later research, and two kinds of distinguishing attacks are proposed. The prerequisites of the attacks are also presented and proved, and an efficient algorithm is introduced to search these prerequisites. Furthermore, our analysis result shows that 5 rounds of the block cipher PRESENT can be distinguished by using only 512 chosen plaintexts.
Keywords
Boolean function higher order differential cryptanalysisPreview
Unable to display preview. Download preview PDF.
References
- 1.Winternitz, R.: A secure one-way hash function built from DES. In: Proceedings of the IEEE Symposium on Information Security and Privacy, pp. 88–90 (1984)Google Scholar
- 2.Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)Google Scholar
- 3.Ferguson, N.: AES-CBC + Elephant diffuser: A disk encryption algorithm for Windows Vista, http://download.microsoft.com/
- 4.FIPS PUB 197: Advanced Encryption Standard (AES). National Institute of Standards and Technology, NIST (2001)Google Scholar
- 5.Trusted Computing Group: Summary of features under consideration for the next generation of TPM, http://www.trustedcomputinggroup.org/
- 6.Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 7.Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 8.Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
- 9.Lai, X.: Higher order derivatives and differential cryptanalysis. Communications and Cryptography: Two Sides of One Tapestry, 227 (1994)Google Scholar
- 10.Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)Google Scholar
- 11.Cusick, T., Stanica, P.: Cryptographic Boolean Functions and Applications. Academic Press, London (2009)Google Scholar
- 12.Carlet, C.: Boolean Function. In: Encyclopedia of Cryptography and Security. Springer, Heidelberg (2005)Google Scholar
- 13.Luo, Y., Lai, X.: On the security of multivariate hash functions. Journal of Shanghai Jiaotong University (Science) 14(2), 219–222 (2009)CrossRefGoogle Scholar
- 14.Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-random functions. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, p. 447. Springer, Heidelberg (1986)Google Scholar
- 15.Aiello, W., Venkatesan, R.: Foiling birthday attacks in length-doubling transformations - benes: A non-reversible alternative to feistel. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 307–320. Springer, Heidelberg (1996)Google Scholar
- 16.Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 17.Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. Cryptology ePrint Archive, Report 2009/397 (2009), http://eprint.iacr.org/
Copyright information
© Springer-Verlag Berlin Heidelberg 2010