Advertisement

SGDB – Simple Graph Database Optimized for Activation Spreading Computation

  • Marek Ciglan
  • Kjetil Nørvåg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6193)

Abstract

In this paper, we present SGDB, a graph database with a storage model optimized for computation of Spreading Activation (SA) queries. The primary goal of the system is to minimize the execution time of spreading activation algorithm over large graph structures stored on a persistent media; without pre-loading the whole graph into the memory. We propose a storage model aiming to minimize number of accesses to the storage media during execution of SA and we propose a graph query type for the activation spreading operation. Finally, we present the implementation and its performance characteristics in scope of our pilot application that uses the activation spreading over the Wikipedia link graph.

Keywords

Graph Structure Outgoing Edge Initial Node Incoming Edge Storage Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amann, M., Scholl, B.: Gram: A graph data model and query language. In: Proceedings of the European Conference on Hypertext Technology (ECHT), pp. 201–211. ACM, New York (1992)Google Scholar
  2. 2.
    Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1), 1–39 (2008)CrossRefGoogle Scholar
  3. 3.
    Berthold, M.R., Brandes, U., Kötter, T., Mader, M., Nagel, U., Thiel, K.: Pure spreading activation is pointless. In: CIKM 2009: Proceeding of the 18th ACM conference on Information and knowledge management, pp. 1915–1918. ACM, New York (2009)CrossRefGoogle Scholar
  4. 4.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pp. 1247–1250. ACM, New York (2008)CrossRefGoogle Scholar
  5. 5.
    Ciglan, M., Rivière, E., Nørvåg, K.: Learning to find interesting connections in wikipedia. In: Proceeding of APWeb 2010 (2010)Google Scholar
  6. 6.
    Crestani, F.: Application of spreading activation techniques in information retrieval. Artif. Intell. Rev. 11(6), 453–482 (1997)CrossRefGoogle Scholar
  7. 7.
    Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: Conference on Social Semantic Web. LNI, vol. 113, pp. 59–68. GI (2007)Google Scholar
  8. 8.
    Gyssens, M., Paredaens, J., Gucht, D.V.: A graph-oriented object model for database end-user. In: Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, pp. 24–33. ACM Press, New York (1990)CrossRefGoogle Scholar
  9. 9.
    Hidders, J.: A graph-based update language for object-oriented data models. Ph.D. dissertation. Technische Universiteit Eindhoven (2001)Google Scholar
  10. 10.
    Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: A peta-scale graph mining system implementation and observations. In: Ninth IEEE International Conference on Data Mining, ICDM 2009, December 2009, pp. 229–238 (2009)Google Scholar
  11. 11.
    Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM - a pragmatic semantic repository for OWL. In: Proc. Workshop Scalable Semantic Web Knowledge Base SystemsGoogle Scholar
  12. 12.
    Levene, M., Poulovassilis, A.: The hypernode model and its associated query language. In: Proceedings of the 5th Jerusalem Conference on Information technology, pp. 520–530. IEEE Computer Society Press, Los Alamitos (1990)CrossRefGoogle Scholar
  13. 13.
    Mainguenaud, M.: Simatic XT: A data model to deal with multi-scaled networks. Comput. Environ. Urban Syst. 16, 281–288 (1992)CrossRefGoogle Scholar
  14. 14.
    Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: PODC 2009: Proceedings of the 28th ACM symposium on Principles of distributed computing, p. 6. ACM, New York (2009)CrossRefGoogle Scholar
  15. 15.
    Mehler, A.: Text linkage in the wiki medium: A comparative study. In: Proceedings of the EACL 2006 Workshop on New Text: Wikis and Blogs and Other Dynamic Text Sources, pp. 1–8 (2006)Google Scholar
  16. 16.
    Paredaens, J., Peelman, P., Tanca, L.: G-Log: A graph-based query language. IEEE Trans. Knowl. Data Eng. 7, 436–453 (1995)CrossRefGoogle Scholar
  17. 17.
    Rohloff, K., Dean, M., Emmons, I., Ryder, D., Sumner, J.: An evaluation of triple-store technologies for large data stores. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1105–1114. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Troussov, A., Sogrin, M., Judge, J., Botvich, D.: Mining socio-semantic networks using spreading activation technique. In: International Workshop on Knowledge Acquisition from the Social Web, KASW 2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marek Ciglan
    • 1
  • Kjetil Nørvåg
    • 1
  1. 1.Dep. of Computer and Information ScienceNTNUTrondheimNorway

Personalised recommendations