Advertisement

A Methodology for Producing Improved Focused Elements

  • Carolyn J. Crouch
  • Donald B. Crouch
  • Dinesh Bhirud
  • Pavan Poluri
  • Chaitanya Polumetla
  • Varun Sudhakar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6203)

Abstract

This paper reports the results of our experiments to consistently produce highly ranked focused elements in response to the Focused Task of the INEX Ad Hoc Track. The results of these experiments, performed using the 2008 INEX collection, confirm that our current methodology (described herein) produces such elements for this collection. Our goal for 2009 is to apply this methodology to the new, extended 2009 INEX collection to determine its viability in this environment. (These experiments are currently underway.) Our system uses our method for dynamic element retrieval [4], working with the semi-structured text of Wikipedia [5], to produce a rank-ordered list of elements in the context of focused retrieval. It is based on the Vector Space Model [15]; basic functions are performed using the Smart experimental retrieval system [14]. Experimental results are reported for the Focused Task of both the 2008 and 2009 INEX Ad Hoc Tracks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bapat, S.: Improving the results for focused and relevant-in-context tasks. M.S. Thesis, University of Minnesota Duluth (2008), http://www.d.umn.edu/cs/thesis/bapat.pdf
  2. 2.
    Bhirud, D.: Focused retrieval using upper bound methodology. M.S. Thesis, University of Minnesota Duluth (2009), http://www.d.umn.edu/cs/thesis/bhirud.pdf
  3. 3.
    Broschart, A., Schenkel, R., Theobald, M.: Experiments with proximity-aware scoring for XML retrieval at INEX 2008. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 29–32. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Crouch, C.: Dynamic element retrieval in a structured environment. ACM TOIS 24(4), 437–454 (2006)CrossRefGoogle Scholar
  5. 5.
    Crouch, C., Crouch, D., Kamat, N., Malik, V., Mone, A.: Dynamic element retrieval in the Wikipedia collection. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 70–79. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Crouch, C., Crouch, D., Bapat, S., Mehta, S., Paranjape, D.: Finding good elements for focused retrieval. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 33–38. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Gery, M., Largeron, C., Thollard, F.: UMJ at INEX 2008: pre-impacting of tags weights. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 46–53. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Itakura, K., Clarke, C.: University of Waterloo at INEX 2008: adhoc, book, and link-the Wiki tracks. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 132–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Khanna, S.: Design and implementation of a flexible retrieval system. M.S. Thesis, University of Minnesota Duluth (2005), http://www.d.umn.edu/cs/thesis/khanna.pdf
  10. 10.
    Lehtonen, M., Doucet, A.: Enhancing keyword search with a keyphrase index. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 65–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Mone, A.: Dynamic element retrieval for semi-structured documents. M.S. Thesis, University of Minnesota Duluth (2007), http://www.d.umn.edu/cs/thesis/mone.pdf
  12. 12.
    Polumetla, C.: Improving results for the relevant-in-context task. M.S. Thesis, University of Minnesota Duluth (2009), http://www.d.umn.edu/cs/thesis/polumetla_c.pdf
  13. 13.
    Poluri, P.: Focused retrieval using exact methodology. M.S. Thesis, University of Minnesota Duluth (2009), http://www.d.umn.edu/cs/thesis/poluri.pdf
  14. 14.
    Salton, G. (ed.): The Smart Retrieval System—Experiments in Automatic Document Processing. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  15. 15.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. ACM Comm. 18(11), 613–620 (1975)CrossRefzbMATHGoogle Scholar
  16. 16.
    Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In: Proc. of the 19th Annual International ACM SIGIR Conference, pp. 21–29 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carolyn J. Crouch
    • 1
  • Donald B. Crouch
    • 1
  • Dinesh Bhirud
    • 1
  • Pavan Poluri
    • 1
  • Chaitanya Polumetla
    • 1
  • Varun Sudhakar
    • 1
  1. 1.Department of Computer ScienceUniversity of Minnesota DuluthDuluthUSA

Personalised recommendations