ENSM-SE at INEX 2009 : Scoring with Proximity and Semantic Tag Information

  • Michel Beigbeder
  • Amélie Imafouo
  • Annabelle Mercier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6203)


We present in this paper some experiments on the Wikipedia collection used in the INEX 2009 evaluation campaign with an information retrieval method based on proximity. The idea of the method is to assign to each position in the document a fuzzy proximity value depending on its closeness to the surrounding keywords. These proximity values can then be summed on any range of text – including any passage or any element – and after normalization this sum is used as the relevance score for the extent. To take into account the semantic tags, we define a contextual operator which allow to consider at query time only the occurrences of terms that appear in a given semantic context.


Query Time Query Term Relevance Score Semantic Context Conjunctive Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mitchell, P.C.: A note about the proximity operators in information retrieval. In: Proceedings of the 1973 meeting on Programming languages and information retrieval, pp. 177–180. ACM Press, New York (1974)Google Scholar
  2. 2.
    Mitra, M., Buckley, C., Singhal, A., Cardie, C.: An analysis of statistical and syntactic phrases. In: Proceedings of RIAO 1997, 5th International Conference “Recherche d’Information Assistee par Ordinateur”, pp. 200–214 (1997)Google Scholar
  3. 3.
    Rasolofo, Y., Savoy, J.: Term proximity scoring for keyword-based retrieval systems. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 207–218. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Büttcher, S., Clarke, C.L.A., Lushman, B.: Term proximity scoring for ad-hoc retrieval on very large text collections. In: ACM SIGIR ’06, pp. 621–622. ACM, New York (2006)CrossRefGoogle Scholar
  5. 5.
    Song, R., Taylor, M.J., Wen, J.R., Hon, H.W., Yu, Y.: Viewing term proximity from a different perspective. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 346–357. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Vechtomova, O., Karamuftuoglu, M.: Lexical cohesion and term proximity in document ranking. Information Processing and Management 44(4), 1485–1502 (2008)CrossRefGoogle Scholar
  7. 7.
    Hearst, M.A.: Improving full-text precision on short queries using simple constraints. In: Proceedings of the 5th Annual Symposium on Document Analysis and Information Retrieval (SDAIR), pp. 217–232 (1996)Google Scholar
  8. 8.
    Clarke, C.L.A., Cormack, G.V., Burkowski, F.J.: Shortest substring ranking (multitext experiments for TREC-4). [13]Google Scholar
  9. 9.
    Hawking, D., Thistlewaite, P.: Proximity operators - so near and yet so far. [13]Google Scholar
  10. 10.
    Clarke, C.L.A., Cormack, G.V.: Shortest-substring retrieval and ranking. ACM Transactions on Information Systems 18(1), 44–78 (2000)CrossRefGoogle Scholar
  11. 11.
    de Kretser, O., Moffat, A.: Effective document presentation with a locality-based similarity heuristic. In: ACM SIGIR ’99, pp. 113–120. ACM, New York (1999)CrossRefGoogle Scholar
  12. 12.
    Beigbeder, M., Mercier, A.: An information retrieval model using the fuzzy proximity degree of term occurences. In: Liebrock, L.M. (ed.) SAC 2005: Proceedings of the 2005 ACM symposium on Applied computing. ACM Press, New York (2005)Google Scholar
  13. 13.
    Harman, D.K. (ed.): The Fourth Text REtrieval Conference (TREC-4). Number 500-236, Department of Commerce, National Institute of Standards and Technology (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michel Beigbeder
    • 1
  • Amélie Imafouo
    • 1
  • Annabelle Mercier
    • 2
  1. 1.École Nationale Supérieure des Mines de Saint-ÉtienneSaint Etienne Cedex 2France
  2. 2.LCIS Lab - Grenoble UniversityValence Cedex 9France

Personalised recommendations