Advertisement

Clustering with Random Indexing K-tree and XML Structure

  • Christopher M. De Vries
  • Shlomo Geva
  • Lance De Vine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6203)

Abstract

This paper describes the approach taken to the clustering task at INEX 2009 by a group at the Queensland University of Technology. The Random Indexing (RI) K-tree has been used with a representation that is based on the semantic markup available in the INEX 2009 Wikipedia collection. The RI K-tree is a scalable approach to clustering large document collections. This approach has produced quality clustering when evaluated using two different methodologies.

Keywords

INEX XML Mining Documents Clustering Structure K-tree Random Indexing Random Projection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K-tree project page (2009), http://ktree.sourceforge.net
  2. 2.
    Geva, S.: K-tree: a height balanced tree structured vector quantizer. In: Proceedings of the 2000 IEEE Signal Processing Society Workshop Neural Networks for Signal Processing X, vol. 1, pp. 271–280 (2000)Google Scholar
  3. 3.
    De Vries, C., Geva, S.: Document clustering with k-tree. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2008. LNCS, vol. 5631, pp. 420–431. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    De Vries, C., Geva, S.: K-tree: large scale document clustering. In: SIGIR 2009: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pp. 718–719. ACM, New York (2009)Google Scholar
  5. 5.
    Sahlgren, M.: An introduction to random indexing. In: Methods and Applications of Semantic Indexing Workshop at the 7th International Conference on Terminology and Knowledge Engineering, TKE 2005 (2005)Google Scholar
  6. 6.
    Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  7. 7.
    Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemporary mathematics 26(189-206), 1 (1984)MathSciNetGoogle Scholar
  8. 8.
    Dasgupta, S., Gupta, A.: An elementary proof of the Johnson-Lindenstrauss lemma. Random Structures & Algorithms 22(1), 60–65 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences 66(4), 671–687 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: KDD 2001: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 245–250. ACM, New York (2001)Google Scholar
  11. 11.
    Kanerva, P.: The spatter code for encoding concepts at many levels. In: ICANN 1994, Proceedings of the International Conference on Artificial Neural Networks (1994)Google Scholar
  12. 12.
    Plate, T.: Distributed representations and nested compositional structure. PhD thesis (1994)Google Scholar
  13. 13.
    De Vries, C., De Vine, L., Geva, S.: Random indexing k-tree. In: ADCS 2009: Australian Document Computing Symposium 2009, Sydney, Australia (2009)Google Scholar
  14. 14.
    Robertson, S., Jones, K.: Simple, proven approaches to text retrieval. Update (1997)Google Scholar
  15. 15.
    Guyon, I., von Luxburg, U., Tubingen, G., Williamson, R., Canberra, A.: Clustering: Science or Art? Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christopher M. De Vries
    • 1
  • Shlomo Geva
    • 1
  • Lance De Vine
    • 1
  1. 1.Faculty of Science and TechnologyQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations