Combining Term-Based and Category-Based Representations for Entity Search

  • Krisztian Balog
  • Marc Bron
  • Maarten de Rijke
  • Wouter Weerkamp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6203)

Abstract

We describe our participation in the INEX 2009 Entity Ranking track. We employ a probabilistic retrieval model for entity search in which term-based and category-based representations of queries and entities are effectively integrated. We demonstrate that our approach achieves state-of-the-art performance on both the entity ranking and list completion tasks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balog, K., Weerkamp, W., de Rijke, M.: A few examples go a long way: constructing query models from elaborate query formulations. In: SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pp. 371–378. ACM Press, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Balog, K., Bron, M., de Rijke, M.: Category-based query modeling for entity search. In: 32nd European Conference on Information Retrieval (ECIR 2010), March 2010, pp. 319–331. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Fissaha Adafre, S., de Rijke, M., Tjong Kim Sang, E.: Entity retrieval. In: Recent Advances in Natural Language Processing (RANLP 2007), September 2007, Borovets, Bulgaria (2007)Google Scholar
  4. 4.
    Lafferty, J., Zhai, C.: Document language models, query models, and risk minimization for information retrieval. In: SIGIR ’01: Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 111–119. ACM, New York (2001)CrossRefGoogle Scholar
  5. 5.
    Losada, D., Azzopardi, L.: An analysis on document length retrieval trends in language modeling smoothing. Information Retrieval 11(2), 109–138 (2008)CrossRefGoogle Scholar
  6. 6.
    Song, F., Croft, W.B.: A general language model for information retrieval. In: CIKM ’99: Proceedings of the eighth international conference on Information and knowledge management, pp. 316–321. ACM, New York (1999)CrossRefGoogle Scholar
  7. 7.
    Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. ACM Transactions on Information Systems 22(2), 179–214 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Krisztian Balog
    • 1
  • Marc Bron
    • 1
  • Maarten de Rijke
    • 1
  • Wouter Weerkamp
    • 1
  1. 1.ISLA, University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations